Climate Compass Blog

How we engaged employees, strengthened community ties, and made the world a little greener

Nearly 2,000 Alcoa employees, their families, and members of their communities learned how to save energy, save money, and help the environment at green fairs over the past three months.

These fairs, organized by the C2ES Make an Impact program in partnership with Alcoa and the Alcoa Foundation, are an example of an evolving approach to corporate social responsibility and employee engagement.

Building awareness of environmental challenges is important, but it isn’t enough. A new approach, bringing together several engagement strategies, aims to build a work force that is both knowledgeable and active in local organizations. The goal is to create stronger relationships among a company, its employees, and community stakeholders, a win-win-win.

Employees, community members and even two mayors came to Alcoa Green Fairs to meet with local businesses and groups providing sustainability solutions. The events took place on weekends or during work breaks in Fullerton and Torrance, Calif.; Hampton, Va.; and Warrick, Ind. Participants could ask questions and get tips about recycling, saving energy and water, and making choices to promote sustainability.

Hands-on activities made it fun. For example, at each fair, we challenged people to see how much physical energy is needed to turn a hand crank (pictured at left) and produce enough power to light an old-fashioned incandescent bulb compared with a modern, efficient compact fluorescent bulb, which requires 75 percent less energy.

The team from Virginia Naturally challenged Hampton fair-goers to guess how long it takes for different types of litter to decompose, driving home the importance of recycling. California employees answered trivia questions from Heal the Bay about storm water management and water conservation.

The fairs informed employees and strengthened Alcoa’s connections to its local communities. More than 50 organizations participated, paving the way for future partnerships and employee volunteer opportunities that will improve the sustainability of each community.

Understanding climate change, even if you're not a scientist

A catchphrase has cropped up in discussions about climate change: “I’m not a scientist…”

You hear it from some elected leaders opposed to taking action to reduce climate risks. It’s usually followed by an argument that climate science is too hard to understand or there’s not enough information that climate change is a serious problem.

With this in mind, we’ve revamped our Science and Impacts webpages to ensure we’re providing understandable, up-to-date climate science information so that anyone can connect the choices we make in producing and consuming energy to the risks of climate impacts.

Firsthand lessons on public charging for EVs

Description: C:\Users\Nick\SkyDrive\Pictures\2014\2014-09_Labor_Day_Weekend\20140828_092039_Android.jpg

My ride for the weekend: BMW’s first mass-produced all-electric vehicle.

Washington, D.C., is well-situated for day trips with mountains, forests, beach and bay all a short drive away. On a recent weekend, I was lucky enough to tool around in style. BMW lent me their new electric car – the i3 – and asked that I race it around the DC metro region. (Or perhaps that’s just how I heard them.)

The car handles beautifully the way you’d expect a BMW to, and proves there’s no performance tradeoff by going with an electric vehicle (EV). For most drivers, EVs like the i3 can accommodate daily driving needs. The average American only travels 30 miles per day. In particular, EVs are well suited for commuting because a driver can charge at home or the workplace. But day-tripping with an EV can take more planning and I learned firsthand that a robust public charging network is essential if EVs are to make more headway in the marketplace.

At C2ES, we often cite the importance of public charging stations to extend the range of EVs and give drivers confidence that an EV is a practical replacement for their conventional car. To allow EV drivers to travel as they would with a gasoline car, quick charging stations are needed along major roadways. Multiple, slower charging stations (referred to as Level 2) should be at key destinations to provide redundancy in case stations are in use or down for maintenance. Those are some of the conclusions of our new paper assessing the public charging infrastructure in Washington state and the same can be said of Washington, D.C.

SaskPower unveils first commercial-scale, coal-fired power plant to capture carbon

For the first time ever, a large-scale, coal-fired power plant is capturing carbon dioxide to keep it from being released into the atmosphere – a milestone for a technology critical to addressing climate change.

Canadian electric utility SaskPower has switched on unit 3 at its Boundary Dam power plant, about 10 miles from the North Dakota border, and will hold an official grand opening Oct. 2. Following a $1.2 billion retrofit, the 46-year-old, 110-megawatt coal unit is now on course toward capturing 90 percent of its carbon emissions. Other upgrades reduce nitrous oxide emissions and capture 100 percent of the unit’s sulfur dioxide emissions.

Numerous commercial-scale carbon capture and storage (CCS) technology projects have been deployed in the industrial sector. In the power sector, demonstration-scale projects have been deployed, but this is the first commercial-scale project.

We will need to construct hundreds of such projects (along with other zero- and lower-emitting technologies) if greenhouse gas emissions are to be reduced to levels that avoid the worst effects of climate change. According to the International Energy Agency, more than 440 terawatt-hours (TWh) of CCS must be generated between 2020 and 2035 to give us a chance of limiting global temperature rise to 2 degrees Celsius (3.6 degrees Fahrenheit) above pre-industrial levels. To get a sense of that scale, SaskPower’s unit 3 can produce up to 1 TWh of electricity per year.

The Boundary Dam project is important not just because it’s the first of its kind, but because it demonstrates a way to help make carbon capture technology economically viable -- by turning unwanted pollutants into valuable commodities. SaskPower has agreed to transport and sell its captured carbon dioxide (CO2) to an oilfield operated by Cenovus for use in enhanced oil recovery (EOR) operations. The captured CO2 helps coax additional production from declining oil fields and results in the permanent storage of the CO2 underground. (In addition, captured sulfur dioxide emissions will be used to produce 50 tons per day of sulfuric acid for industrial customers, and SaskPower will sell the plant’s coal combustion residuals, also known as coal ash, for use in construction products like drywall and concrete.)

Companies are part of the equation to address climate change

While the focus in New York this week has been on world leaders pledging to act on climate change, business leaders also stepped up to be part of the climate solution.

In recent years, many companies have acknowledged the risks of climate change and worked to improve their energy efficiency and sustainability. This week, companies announced new efforts to fund clean energy, reduce carbon emissions, and support a price on carbon.

For example, Bank of America announced an initiative to spur at least $10 billion of new investment in clean energy projects. Hewlett Packard announced plans to reduce emissions intensity of its product portfolio by 40 percent from 2010 levels by 2020.

Many companies joined together to take a stand: