Going Rogue, DOE Style

Bacteria that produce gasoline.  “Blown wing” technology for wind turbines. Enzymes that capture carbon dioxide. Batteries that store solar energy overnight.  This is a short list of the 37 projects recently selected as the recipients of $151 million in research grants from the Advanced Research Projects Agency-Energy, or ARPA-E. In short, it’s the Department of Energy’s version of going rogue.   

ARPA-E is a new agency within the DOE that aims to fund cutting-edge energy and climate research. This may not be the conventional approach of government programs, but it is not unprecedented: ARPA-E is modeled on a Defense Department program, known as DARPA, that played a significant role in the commercialization of microchips and the Internet along with other high-tech innovations.

ARPA-E was created by Congress in August 2007 under the America COMPETES Act, but was left unfunded until Congress authorized $400 million for the agency in this year’s stimulus bill. The agency began to mobilize its resources this fall. In September, Arun Majumdar, a scientist at the Lawrence Berkeley National Laboratory in California, was confirmed as the agency’s director and soon after announced the winners of the first round of proposal solicitations. The 37 winning projects represent 1% of submitted proposals and include high-risk and high-payoff ideas and technologies in all stages of development. ARPA-E hopes that down the line the more promising projects will get picked up by venture capitalists or major companies willing to invest more resources to bring these projects from the laboratory to the marketplace.

The focus on high risk and high payoff means that ARPA-E must expect failure as well as success. Energy Secretary Steven Chu, one of the original visionaries of the ARPA-E concept, believes a few projects could have “a transformative impact.” In this economic climate, many investors overlook high-risk, but also high-reward, energy research and technology development. ARPA-E is an innovative and welcome approach to keep these projects in the pipeline, as a radical breakthrough in advanced technology could facilitate a U.S.-led transition to a global clean energy economy.        

Olivia Nix is the Solutions intern