developing countries

Transportation in Developing Countries: Greenhouse Gas Scenarios for South Africa

Download Report

Transportation in Developing Countries: Greenhouse Gas Scenarios for South Africa

Prepared for the Pew Center on Global Climate Change
February 2002

By:
Jolanda Pretorius Prozzi, Cambridge Systematics
Clifford Naudé, Council for Scientific and Industrial Research: Transportek, South Africa
Daniel Sperling and Mark Delucchi, University of California, Davis

Press Release

Download Entire Report (pdf)

Foreword

Eileen Claussen, President, Pew Center on Global Climate Change

South Africa has relatively high aggregate and per capita greenhouse gas (GHG) emissions compared to other developing countries, and to world averages. Transportation sector emissions are increasing, but climate change competes with urgent economic, social, and public health concerns for government attention. As a party to the UN Framework Convention on Climate Change and an active participant in the Kyoto Protocol negotiations, South Africa may be able to address transportation emissions through projects under the Protocol's Clean Development Mechanism.

The two major forces affecting South Africa's transportation sector are the country's legacy of apartheid and privatization. Apartheid-era policies cause high greenhouse gas emissions in two ways: (1) Blacks lived in separate townships and homelands, forcing them to travel long distances to jobs in commercial or white residential areas; and (2) anti-apartheid sanctions resulted in South Africa using high-carbon synthetic fuels based on domestic coal and boosting the local vehicle manufacturing industry. Privatization in the 1980s resulted in freight transportation shifting from rail to more energy-intensive trucks. Intense competition within the trucking industry has resulted in poor maintenance and extended use of inefficient vehicles by small entrepreneurial companies. This problem is more widespread in the minibus 'jitney' sector, which evolved to serve the unmet travel needs of black South Africans.

This report creates two scenarios of greenhouse gas emissions in 2020. In the high business as usual scenario, residual land use policies continue to aggravate transportation problems. Personal car use accelerates as car prices drop and consumer credit becomes more widely available. In the low GHG scenario, mobility, accessibility, and safety concerns drive the government to play an active role in land use and transportation policies. More efficient use of urban land and energy resources improves the quality of life and reduces GHG emissions. Low-emissions scenario strategies are not necessarily costly but require strong political commitment.
Some key results are:

  • GHG emissions increase 82 percent in the high scenario; but decrease 12 percent in the low scenario.
  • Coordinating land use, housing, and passenger transportation policies would promote more efficient urban land use patterns that reduce travel distances and correct spatial imbalances.
  • Both (1) restructuring commuter services so that rail serves the densest population centers, buses serve secondary routes, and minibus jitneys provide feeder or local services; and (2) dedicated taxes on vehicle purchases and use, would improve and help sustain public transportation.
  • Changing technology, such as cleaner feedstock for synthetic fuel, would reduce GHG emissions.
  • Providing incentives to domestic auto manufacturers to produce buses and minibuses instead of cars would reduce the car orientation of the transportation system.

Transportation in Developing Countries: Greenhouse Gas Scenarios for South Africa is the third report in a five-part series examining transportation sector GHG emissions in developing countries. The findings are based on a Lifecycle Energy Use and Emissions Model developed by the Institute of Transportation Studies at the University of California at Davis, which estimates GHG emissions from the transportation sector. The Pew Center gratefully acknowledges Ogunlade Davidson of the University of Cape Town, Ralph Gakenheimer of MIT, Talia McCray of the Université de Laval, and Michael Walsh, an independent transportation consultant, for their review of earlier drafts. 

Executive Summary

The performance and structure of South Africas transportation system is largely explained by two phenomena: the legacy of apartheid and privatization. Apartheid had far-reaching impacts, even extending deep into the country's transportation and energy system. Largely as a result of these policies, the country's contributions to global greenhouse gas (GHG) emissions are high compared to those of other African nations, both in aggregate and per capita terms. Some of the transportation and energy effects of apartheid include the following:

  • Land use policies were based on race and ethnicity, in which black residential areas were moved to the outskirts of growing urban areas and beyond, creating long commuting distances for most of the black poor.
     
  • Energy investments in innovative coal-based synthetic fuel processes were greatly expanded following international sanctions during the 1970s and 1980s.
  • Import substitution economic policies promoted the domestic motor vehicle manufacturing industry.
     
  • Generous company car allowances and subsidized vehicle schemes nurtured a market for private cars to support the domestic auto industry.
     
  • Public transportation services designed to serve long-distance commuters with low levels of service inspired black entrepreneurs to create informal services by minibus jitneys - van-type vehicles - for the many unserved travel needs. These services tend to be provided with inefficient vehicles resulting in higher energy consumption and emissions.
     

The good news is that South Africa has emerged from decades of apartheid policies with a functioning economy and extensive social and physical infrastructure. The bad news is that besides creating pervasive economic and social problems, apartheid polices led to a set of travel behaviors and transportation-related investments that increased energy use and GHG emissions.

Privatization is a second major phenomenon shaping South Africa's transportation system and its energy and environmental performance. The country is steadily privatizing both its passenger and freight transportation systems, largely because of shrinking government funds and an inability to manage urban sprawl. The effects of privatization in the transportation sector have been positive in many ways - including expanded transit service and lower freight costs. But dwindling government subsidies and rapid growth in minibus jitney services have led to sharp ridership losses on the extensive rail and bus systems. This change has resulted in more energy use, GHG emissions, pollution, road deaths, and, paradoxically, continuing urban sprawl.

Minibus jitneys have come to dominate the provision of passenger transportation services. They are almost totally owned by black South Africans. In only two decades, jitneys have expanded to account for two-thirds of all public transportation services and over one-third of total passenger travel in South Africa. They are expensive relative to bus and rail transit, but ubiquitous, providing service to many poor travelers. Financial problems in the minibus jitney industry have led to increasingly old, dilapidated, uncomfortable, and unsafe vehicles, resulting in higher energy consumption and GHG emissions. The government is now attempting to organize and regulate the minibus jitney sector.

Privatization in the freight sector has also propelled large modal shifts from rail to truck. Until 1988, trucks were not allowed to compete with the government-owned railroad. When the freight sector was deregulated in 1988, truck use rapidly expanded, resulting in lower freight tariffs, and a large drop-off in rail use.

Overall, the combined effect of privatization and the apartheid legacy is inflated travel demand, growing use of motor vehicles and trucks, and use of high-carbon fuels. The challenge is to devise policies and strategies to redirect these behaviors and investments to create a more economical, environmental, and socially beneficial transportation system.

Numerous policy options exist to reduce GHG emissions from the transportation sector. These policies affect when, how, where, and why people travel. Options range from adopting efficient advanced vehicle technologies to various administrative controls (including parking controls and car restriction zones) and economic measures (including additional vehicle and fuel taxes).

Environmental quality is not a high priority in South Africa, one of the few countries that does not regulate motor vehicle emissions of air pollutants. However, leaders are motivated to improve mobility, accessibility, and road safety, and reduce traffic congestion. Many of the strategies targeted at those goals will restrain GHG emissions:

  • Improve accessibility and mobility. Due to racial segregation, most South Africans live far away from employment centers and economic services. Improved public transportation is the most efficient means of enhancing mobility and accessibility. Enhanced public transportation would restrain growth in the use of personal vehicles, with associated reductions in the growth of GHG emissions.
     
  • Improve road safety. Road safety is a serious concern in South Africa. Policies that improve road safety, such as enforcing speed limits, scrapping older vehicles, and improving vehicle maintenance could help reduce GHG emissions.
     
  • Reduce traffic congestion. Congestion is increasing in all major areas and is expected to become a major problem shortly. Since South Africa does not have the funding to build many more roads, an improved public transportation system will be vital to ensure mobility for the vast majority of its people.
     
  • Increase tax revenue. Increasing fuel and vehicle taxes - an important source of government revenue - would help pay for social expenditures and raise the cost of private vehicle use.
     
  • Respond to international pressure. By ratifying the United Nations Framework Convention on Climate Change, South Africa has become part of the global community that is committed to taking responsibility for its GHG emissions.
     

Two transportation scenarios were designed for South Africa - one that yielded higher GHG emissions by 2020, and one that yielded lower emissions. These scenarios draw upon extensive interviews with decision-makers and experts in South Africa.

The higher GHG scenario assumes a continuation of observable and emerging trends. In this 'business-as-usual' scenario, the government remains entangled in crisis management. It focuses on health, education and social unrest related to skewed income distributions, and ignores transportation concerns. Residual land use policies from apartheid continue to aggravate transportation problems. Cities remain divided and land developers give little consideration to the implications of long commuting distances. The automotive industry remains a pillar of economic development. Personal car use accelerates as car prices drop and consumer credit becomes more widely available.

In this scenario, private cars and minibuses increase their share of total passenger-kilometers from 51 percent in 2000 to 59 percent in 2020, while public transits share decreases from 49 to 41 percent. Minibus jitneys retain 60 percent of the public transit modal share. The effect on greenhouse gases is significant: South African emissions increase by 82 percent from 2000 to 2020.

In the lower GHG scenario, the motivation for change and government action are driven by mobility, accessibility, and safety concerns. The government plays an active role in land use policies and surface passenger transportation. Land use and housing policies are adopted that promote more efficient urban land use patterns, gradually correcting spatial imbalances and reducing travel distances. The government promotes public transportation, restructuring the minibus jitney, bus, and commuter rail sectors. Under the new structure, trains serve the routes with the densest population, buses serve the secondary routes and minibus jitneys provide feeder or local services. The sustainability of the public transportation system is ensured through revenues raised from dedicated taxes on vehicle buyers and users. South African auto manufacturers are provided with incentives to design and build buses and minibuses appropriate to the local market. Sasol, the large industrial company in South Africa that produces synthetic oil from coal, starts to use natural gas as feedstock in the production of synthetic fuel. This change would avoid the high costs of impending capital investments in coal mining, while harnessing the environmental benefits associated with the use of a cleaner feedstock.

This low-emissions scenario leads to enhanced quality of life and more efficient use of resources - urban land and energy - and decreased GHG emissions. The modal share of private cars and public transit remains approximately constant at 48 and 52 percent, respectively, but minibus jitneys suffer a significant decline in public transit modal share, from 65 percent in 2000 to 56 percent in 2020. Bus and rail transportation account for the remaining share of public transit mode share at 19 and 25 percent respectively. The result is a 12-percent decrease in GHG emissions despite the fact that passenger-kilometers increase by about 54 percent. The strategies in the low-emissions scenario are not necessarily costly, but they do require strong political will and a commitment that has yet to be demonstrated by South African leaders. 

About the Author

Jolanda Pretorius Prozzi

Ms. Jolanda Prozzi holds a Master of Science in Transportation Technology and Policy from the University of California (Davis) and a Master of Commercial Sciences from the University of Stellenbosch (South Africa), with specialization in transport economics. Ms. Prozzi has almost nine years of professional and research experience in transportation economics and policy analysis, including a number of environmental policy studies. Prior to joining the Center for Transportation Research at the University of Texas, Austin, Ms. Prozzi was a Transportation Analyst at Cambridge Systematics, Inc., a Consultant Transport Economist for the World Bank and a Researcher at the Council for Scientific and Industrial Research (CSIR): Division of Roads and Transport Technology in Pretoria, South Africa. 

Clifford Naude
Daniel Sperling
Jolanda Pretorius Prozzi
Mark Delucchi
0

Transportation in Developing Countries: Greenhouse Gas Scenarios for Shanghai, China

Download Report

Transportation in Developing Countries: Greenhouse Gas Scenarios for Shanghai, China

Prepared for the Pew Center on Global Climate Change
July 2001

By:
Hongchang Zhou, Tongji University, Shanghai
Daniel Sperling, Mark Delucchi, and Deborah Salon, Institute of Transportation Studies, University of California, Davis

Press Release

Download Entire Report (pdf)

Foreword

Eileen Claussen, President, Pew Center on Global Climate Change

The transportation sector is a leading source of greenhouse gas (GHG) emissions worldwide, and one of the most difficult to control. In developing countries, where vehicle ownership rates are considerably below the OECD average, transport sector emissions are poised to soar as income levels rise. This is especially true for China, whose imminent accession to the World Trade Organization will contribute to economic growth and could make consumer credit widely available for the first time. These factors are likely to accelerate automobile purchases, and GHG emissions.

Shanghai is one of China's most dynamic cities. Extremely densely populated, with very low personal vehicle ownership rates for its income level, Shanghai is also home to a nascent Chinese automotive industry. Transportation plans and policies there are designed to achieve broader urban objectives of population decentralization, with an eye to controlling increases in traffic congestion and improving environmental quality. Because Shanghai's transportation system and planning process are so sophisticated, Shanghai may be a 'best case' for controlling transportation sector GHG emissions in the absence of climate change mitigation goals.

This report creates two scenarios of GHG emissions from Shanghais transportation sector in 2020. It finds:

  • Greenhouse gas emissions quadruple in the low-GHG scenario; they increase sevenfold in the high scenario. On a passenger-kilometer basis, the estimated increase ranges from 10 to 100 percent.
  • Providing an array of high-quality options to travelers can help meet the demand for transportation services while keeping traffic congestion in check and meeting other urban objectives.
  • Special lanes and other infrastructure to accommodate vehicles such as buses, minicars, and bicycles can save money and improve traffic circulation.
  • Using clean technology and fuels in motorized vehicles lowers the environmental impact of various transportation modes.
  • Perfecting the use of 'intelligent' traffic control systems through improved coordination will yield higher returns on capital investments.

Transportation in Developing Countries: Greenhouse Gas Scenarios for Shanghai, China is the second report in a series examining transportation sector GHG emissions in developing countries. The report's findings are based on a Lifecycle Energy Use and Emissions Model developed by the Institute of Transportation Studies at the University of California at Davis, which estimates GHG emissions from the transportation sector.

The Pew Center would like to thank Kebin He of Tsinghua University, Feng An of Argonne National Laboratory, Ralph Gakenheimer of MIT, and Michael Walsh, an independent transportation consultant, for their review of earlier drafts. 

Executive Summary

Shanghai is experiencing rapid economic growth. Affluence is motivating dramatic and far-ranging changes in urban structure, transportation, and energy use. This report examines two transportation trajectories that Shanghai might follow and how they would affect greenhouse gas (GHG) emissions. Shanghai’s metropolitan population of over 13 million people continues to grow relatively slowly, but its economy is growing rapidly. The average annual per capita income is $4,000, three times higher than the rest of China, and the Shanghai economy is expected to grow at more than 7 percent per year through 2020.

Massive new transport system investments planned for the next two decades are aimed at lowering Shanghai’s extremely high population density, supporting economic growth, and enhancing the quality of life. The list of new investments is impressive: expansion of the new airport, construction of a deep-water harbor, three new bridges and tunnel river crossings, completion of a 200-kilometer modern rapid transit rail system, expansion of suburban highways, and construction of 2,000 kilometers of new and upgraded urban roads. These investments will improve the city's transportation system, but are costly and threaten greater energy use and air pollution.

A central issue in Shanghai’s development is the role of personal vehicles, especially cars. The city currently devotes little land to roads and has only 650,000 cars and trucks — very few of which are privately owned — placing vehicle ownership levels well below virtually all cities of similar income. Even with this small number of vehicles, Shanghai already suffers from serious transport-induced air pollution and traffic congestion.

Shanghai city planners project a quadrupling of cars and trucks in the city by 2020. This projected increase is premised principally on two factors. First is rapid income growth, which will make car ownership possible for a much larger segment of the population. And second is vehicle prices, which are likely to plummet due to China’s imminent accession to the World Trade Organization (WTO). Lower prices will result from increased competition, compulsory reductions in vehicle tariffs, and easier access to consumer credit.

These projected increases in vehicle use are not certain.  Even apart from the WTO membership, vehicle ownership and use--and GHG emissions--will be strongly influenced by three interrelated policy debates: industrial policy toward the automotive industry, air quality policy, and transportation and urban growth policy.

The city's decision about vehicle use will be critical in shaping Taiwan's future.
This report addresses the forces about to transform the transportation system of Shanghai, and examines policies and strategies that that direct it toward greater economic, social and environmental sustainability.

The two transportation scenarios draw upon extensive interviews with decision-makers and experts in Shanghai and Beijing.  One scenario is premised on rapid motorization, the other on dramatic interventions to restrain car use and energy consumption, resulting in lower GHG emissions.  Neither is the "business-as-usual" scenario, since this characterization is meaningless in a time of massive investments and policy shifts.  Instead, these scenarios are meant to estimate likely upper and lower bounds of greenhouse gas emissions from Shanghai transport in 2020, taking as given the projected strong economic growth.  If the economy grows more slowly, emissions will likely be lower than the scenarios indicate.

The rapid motorization scenario is based on the projected quadrupling of cars by 2020, coupled with a substantial increase in population.  It results in a seven-fold increase in GHG emissions.  The restrained scenario results in a four fold increase in GHG emissions.  In this restrained scenario, almost all emissions growth is due to increase in travel, not increases in energy intensity or GHG intensity of the travel.  Emissions per passenger-kilometer increase only about 10 percent the restrained scenario compared to a doubling in the rapid motorization scenario.

Caution is urged in generalizing the findings of this report to other cities in developing nations.  Shanghai is not a typical Asian city, given its surging economy and its world-class planning capabilities.  However, the conditions for alternative transportation options are more propitious here than perhaps any other megacity in the world.  If the city is effective at restraining growth in vehicle use (and GHG emissions), Shanghai may serve as a model for other cities in the developing world. 

Daniel Sperling
Deborah Salon
Hongchang Zhou
Mark Delucchi
0

Transportation in Developing Countries: Greenhouse Gas Scenarios for Delhi, India

Download Report

Transportation in Developing Countries: Greenhouse Gas Scenarios for Delhi, India

Prepared for the Pew Center on Global Climate Change
May 2001

By:
Ranjan Bose and K.S. Nesamani, Tata Energy Research Institute (TERI)
Geetam Tiwari, Indian Institute of Technology-Delhi
Daniel Sperling, Mark Delucchi, and Lorien Redmond, Institute of Transportation Studies, University of California, Davis
Lee Schipper, International Energy Agency

Press Release

Download Entire Report (pdf)

Foreword

Eileen Claussen, President, Pew Center on Global Climate Change

Greenhouse gas emissions in developing countries are increasing most rapidly in the transportation sector. Even people with low incomes are meeting their need for mobility, and projected income growth over the next two decades suggests that many more will acquire personal modes of transportation. How this will affect the earth's climate is a great concern.

In Delhi, India, transportation sector greenhouse gas emissions are expected to soar. There are policy and technology choices that could significantly lower the emissions growth rate while increasing mobility, improving air quality, reducing traffic congestion, and lowering transport and energy costs. To realize these benefits, vision, leadership, and political will must be brought to bear. Delhi has high vehicle ownership rates for the city's income level, increasing congestion, poor air quality, poor safety conditions, and insufficient coordination among the responsible government institutions. Travelers in Delhi desire transportation services, reflected by the increasing numbers of inexpensive but highly polluting scooters and motorcycles.

This report creates two scenarios of greenhouse gas emissions from Delhi's transportation sector in 2020. It finds:

  • Greenhouse gas emissions quadruple in the high-GHG, or business-as-usual, scenario; but only double in the low scenario.
  • Transportation policies are readily available that will not only slow emissions growth, but also significantly improve local environmental, economic, and social conditions.
  • Improved technology would maximize the efficiency of automobiles, buses, and other modes of transportation and could play a key role in reducing emission increases.
  • Keeping many travel mode options available - including minicars and new efficient scooters and motorcycles - will help individuals at various income levels meet their mobility needs.
  • The time to act is now. The issues facing Delhi represent opportunities for improvement, but the longer authorities wait to address transportation inefficiencies, the more difficult and expensive it will be to produce a positive outcome.

Transportation in Developing Countries: Greenhouse Gas Scenarios for Delhi, India is the first report in a five-part series examining transportation sector greenhouse gas emissions in developing countries. The report findings are based on (1) a regression model developed by TERI to forecast future increases in vehicle ownership and travel by different modes and (2) a Lifecycle Energy Use and Emissions Model developed by the Institute of Transportation Studies at U.C.-Davis which estimates greenhouse gas emissions from the transportation sector.

The Pew Center gratefully acknowledges Anita Ahuja of Conserve, Ralph Gakenheimer of MIT, and Michael Walsh, an independent transportation consultant, for their review of earlier drafts. 

Executive Summary

Delhi, India is a rapidly expanding megacity. Like many other cities its size, Delhi faces urban gridlock and dangerous levels of air pollution. Vehicle ownership is still a fraction of that in industrialized countries, but remarkably high considering the population's relatively low income. Worldwide, energy use is increasing faster in the transport sector than in any other sector, and fastest of all in developing countries. From 1980 to 1997, transportation energy use and associated greenhouse gas (GHG) emissions increased over 5 percent per year in Asia (excluding the former Soviet Union) and 2.6 percent in Latin America, compared to one percent growth in greenhouse gases from all sectors worldwide.

Delhi faces the same transportation, economic, and environmental challenges of other megacities. Population, motor vehicles, pollution, and traffic congestion are all increasing. Air pollution levels greatly exceed national and World Health Organization health-based standards, and transportation is by far the largest source of pollution. In the past 30 years, Delhi's population more than tripled and the number of vehicles increased almost fifteenfold.

By 2000, Delhi had about 2.6 million motor vehicles - 200 for every 1,000 inhabitants, a rate far higher than most cities with similar incomes. Most of these vehicles are small, inexpensive motorcycles and scooters, rather than automobiles. This proliferation of vehicles in a relatively poor city indicates the strong desire for personal transport - a phenomenon observed virtually everywhere. Delhi is an example of how that desire can now be met with relatively low incomes.

Delhi is expected to continue growing at a rapid rate. Its population is expected to surpass 22 million by 2020. Motor vehicles, including cars, trucks, and motorized two- and three-wheelers, are expected to grow at an even faster rate. The domestic auto industry is predicting car sale increases of 10 percent per year. With an extensive network of roads and increasing income, there is every reason to expect vehicle sales and use to continue on a sharp, upward trajectory. 

0

Developing Countries & Global Climate Change: Electric Power Options in Brazil

Developing Countries & Global Climate Change: Electric Power Options in Brazil

Prepared for the Pew Center on Global Climate Change
May 2000

By:
Roberto Schaeffer, Federal University of Río de Janeiro
Jeffery Logan, Battelle, Advanced International Studies Unit
Alexandre Salem Szklo, Federal University of Río de Janeiro
William Chandler, Battelle, Advanced International Studies Unit
João Carlos de Souza Marques, Federal University of Río de Janeiro

Press Release

Download Entire Report (pdf)

Foreword

Eileen Claussen, President, Pew Center on Global Climate Change

Brazil is the fifth largest country in the world and its economy is roughly equal to that of all other South American countries combined. Yet, its greenhouse gas emissions are less than one-third of the continent's total due to the dominant role of hydropower. Total energy consumption is less than one-tenth the level in the United States and per capita carbon emissions are just 0.5 tons, compared to approximately 1.0 ton in Argentina and Mexico.

Brazil is already considered an environmental leader among developing countries and plays a significant role in the international climate change debate. Whether it is able to stay on this path will depend in part on its energy choices over the next fifteen years. This report describes the context for new power sector investments and presents three alternative policy scenarios for 2015. The report finds that:

  • Construction of new hydroelectric plants is increasingly expensive and controversial due to social and environmental impacts. As a result, many new investors may favor natural gas-fired combined-cycle plants. Under a business-as-usual trajectory, carbon dioxide emissions will grow from 3.4 million tons in 1995 to 14.5 million tons in 2015, mainly due to this shift to natural gas.
  • Further tightening of local environmental regulations and adoption of renewable energy policies could reduce carbon dioxide and sulfur dioxide emissions by 82 percent and 75 percent, respectively, by 2015 compared to the baseline scenario, at little additional cost.
  • Creating a carbon-free power sector would require an additional $25 billion in cumulative costs by 2015 — about 15 percent more than the business-as-usual scenario — and would expand the use of renewable energy resources.
  • Wind power potential could be harnessed — increasing from zero to 2 percent of total installed capacity by 2015 — depending on the extent of government subsidies.

Developing Countries and Global Climate Change: Electric Power Options in Brazil is the fifth of a series commissioned by the Center for Climate and Energy Solutions to examine the electric power sector in developing countries, including four other case studies of Korea, India, China, and Argentina.

The Pew Center was established in 1998 by the Pew Charitable Trusts to bring a new cooperative approach and critical scientific, economic, and technological expertise to the global climate change debate. We believe that climate change is serious business, and only through a better understanding of circumstances in individual countries can we hope to arrive at a serious response.   

Executive Summary

Brazil generates over 90 percent of its electricity by capturing the energy in falling water. Per capita carbon emissions in Brazil are less than half the world average, largely because of the country's heavy reliance on hydropower, which produces few greenhouse gas emissions. Many of the country's new power plants, however, will likely use natural gas since many investors view hydroelectric plants as increasingly costly, controversial, and risky.

This study analyzes the options for meeting power demand in the Brazilian power sector through 2015. Meeting this demand at least-cost — including the estimated costs of environmental impacts — is a topic of great concern for decision-makers in government and industry. The electric power choices Brazil makes may influence the global response to climate change out of proportion to its emissions, as Brazil is considered an environmental leader among developing countries.

Current reforms in the power sector have been designed mainly to cut costs by introducing competition in electricity generation. Other objectives include reducing government investment in power plant construction and the risk of electricity shortages. These reforms have catalyzed institutional changes in Brazil: privatization, elimination of tariff equalization across regions, and the introduction of supply contracts between power generation and distribution utilities.

The authors begin with a brief review of Brazil's economic and energy situation, then turn to a detailed account of the nation's electric power sector. The report presents results of regional electric power demand forecasts through 2015 and assessments of available energy resources and technologies. An analysis using a linear programming model determines the least-costly combinations of power supply technologies that meet projected power demand.

Three policy cases were devised to test economic and environmental policy measures against a baseline: advanced technologies, local environmental control, and carbon elimination. Least-cost modeling simulated these scenarios through changes in emissions fees and caps, costs for advanced technologies, demand-side efficiency, and clean energy supplies.

The authors conclude that, without alternative policies, new additions to Brazil's electric power sector will shift rapidly from hydroelectricity to combined-cycle natural gas plants. Greenhouse gas emissions will thus increase rapidly, although the absolute quantities will remain relatively low. While combined-cycle natural gas plants generate power with 60 percent less carbon dioxide emissions than coal units, greenhouse gas emissions will still rise rapidly as the gas plants replace hydropower facilities that are nearly carbon-free. Specifically, the scenarios produced the following results:

Baseline Scenario. This scenario assumes that institutional reform such as privatization and increased competition among generators is successfully implemented over the coming decade. The installed capacity grows from 56 gigawatts in 1995 to 94 gigawatts in 2015, an increase of 68 percent. Natural gas plants increase from essentially zero to 11 percent of installed capacity over the period of analysis. Energy efficiency and cogeneration play important roles in limiting an even greater reliance on fossil fuel power generation. The total cost of meeting demand is $183 billion,1 which includes capital, fuel, and operation and maintenance costs. Carbon dioxide emissions rise more than four-fold from 3.4 million tons of carbon in 1995 to 14.5 million tons in 2015. However, the intensity of CO2 emissions in Brazil remains low, even in 2015, as hydropower still accounts for 74 percent of total generation. Sulfur dioxide and particulate emissions grow proportionately with power generation, while nitrogen oxides increase five-fold to reflect the greater use of natural gas in power generation turbines.

Advanced Technology Scenario. The advanced technology scenario simulates capital cost reductions for power plant equipment due to technological progress driven by government incentives. Environmental costs are also at least partially accounted for in the least-cost analysis by including some of the external costs of emissions, hydropower construction, and nuclear decommissioning that are normally ignored. Wind power increases from zero to almost 2 percent of total installed capacity by 2015 due to the environmental fees imposed on fossil-fuel use. The total cost of this scenario is $181 billion, 1.6 percent less than the baseline, mainly due to the cheaper costs of building and operating combined-cycle power plants in the later years. This figure does not include the research, development, and deployment costs needed to improve technologies. Carbon dioxide emissions drop slightly from the baseline, reaching 13.3 million tons of carbon in 2015. Sulfur dioxide emissions decline by approximately 50 percent due to the elimination of diesel generators after 2005.

Local Environmental Control Scenario. In this scenario, renewable energy policies and the use of higher environmental externalities influence the technologies employed. The environmental costs of pollution are assessed at a higher value than in the technology scenario, and cost reductions for cleaner, advanced technologies are also assumed. Hydropower plays a larger role in this scenario, rising to over 88 percent of total installed capacity. The environmental and social impacts of expanding hydroelectric power production this much are difficult to estimate, but could be significant. Biomass capacity rises from 2 percent in the 2015 baseline case to 5 percent. The cost of this scenario is $179 billion. Carbon dioxide emissions drop from 3.4 million tons of carbon in 1995 to 2.6 million tons in 2015. Sulfur dioxide emissions decline substantially, while particulate emissions increase due the growth in biomass combustion for power generation.

Carbon Elimination Scenario. In the carbon elimination scenario, Brazil installs electric power generation technologies that produce no net carbon dioxide emissions and only minor impacts on watersheds and landscapes. Installed capacity in 2015 reaches 97 gigawatts, and hydropower continues to account for over 80 percent of installed capacity. Renewable energies account for 97 percent of power generation in 2015, with biomass accounting for over 16 percent. The remaining 3 percent is generated from existing nuclear power plants. The total cost of the expansion is $208 billion, 14 percent above the baseline scenario. Carbon emissions cease and sulfur dioxide emissions drop, but particulate emissions rise five-fold due to the heavy reliance on biomass.

Conclusions

Brazilian power supply will continue to rise at appreciable rates over the next two decades regardless of the country's current economic difficulties. Reforms under way in the power sector, however, will greatly influence how power demand is met and the emissions that result. Hydropower will continue to play a dominant role through 2015, although its relative share will most likely decrease.

Carbon emissions more than quadruple in the baseline scenario to 14.5 million tons, but remain extremely low in absolute terms. (For comparison, the U.S. power industry released approximately 550 million tons of carbon dioxide in 1998.2) This output is equivalent to the emissions from 10 large coal-fired power plants. Biomass and wind power might play a larger role in Brazil's power future if the government focuses on developing advanced technologies and accounts for at least some of the costs to the environment. Coal-based technologies are not competitive with other forms of power generation, allowing Brazil to largely avoid the tradeoff between improving the quality of the local environment and reducing global greenhouse gas emissions.

In the local environmental control and carbon elimination scenarios, there is a strong interdependence between electricity generation based on sugar cane bagasse and ethyl alcohol production for automotive use. By accounting for the environmental impacts of local pollutants or restricting power generation options to those with no carbon dioxide emissions, sugar cane bagasse becomes feasible, making it the power generation technological option that is most widely used in both scenarios after hydropower. This indicates that Brazil has the potential to service the electricity market without carbon emissions if the market or the international community can support the 14 percent higher costs.

In all four scenarios, energy efficiency and cogeneration play an important role in the least-cost power solution. Saving electricity through increased efficiency offsets the need for new supply and has enormous potential in Brazil's industrial sector. Efficiency also reduces the environmental burden associated with electricity production and transmission (most likely via natural gas combined-cycle plants) without compromising the quality of services that end users demand.

Carbon dioxide emissions from Brazil's power sector will remain low in absolute terms over the next two decades. Brazil appears able to play a unique role within the context of the UN Framework Convention on Climate Change by fostering economic growth that does not sacrifice local or global environmental quality. Achieving cleaner development would serve as a powerful example for other developing countries. 

Alexandre Salem Szklo
Jeffrey Logan
João Carlos de Souza Marques
Roberto Schaeffer
William Chandler
0

Developing Countries & Global Climate Change: Electric Power Options in Korea

Developing Countries & Global Climate Change: Electric Power Options in Korea

Prepared for the Pew Center on Global Climate Change
October 1999

By:
Jin-Gyu Oh, Korea Energy Economics Institute
Jeffrey Logan, Battelle, Advanced International Studies Unit
William Chandler, Battelle, Advanced International Studies Unit
Jinwoo Kim, Korea Energy Economics Institute
Sung Bong Jo, Korea Energy Economics Institute
Dong-Seok Roh, Korea Energy Economics Institute

Press Release

Download Entire Report (pdf)

 

Foreword

Eileen Claussen, Executive Director, Pew Center on Global Climate Change

The Republic of Korea straddles the line between developed and developing countries. Power demand is expanding rapidly - a "business-as-usual" path doubles consumption by 2015 - and the economy is driven largely by basic, energy-intensive industries. In addition, Korea imports over 90 percent of its fuel. Because of this, the energy choices Korea makes are complicated and may have ramifications for the global environment that outstrip the nation's size. They could leave Korea's greenhouse gas emissions virtually unchanged - or more than double them.

What will be the likely drivers of the technology choices for the next twenty years of new power generation?

  • Economic forces pulling Korea toward additional restructuring of the power sector and reform of industrial policy can reduce emissions of carbon dioxide by 9 percent relative to the baseline, with slightly lower costs per unit of electricity generated. Increasing the supply of natural gas and reducing import tariffs on that fuel have similar impacts.
  • Economic concerns also might lead to more widespread adoption of cost-effective energy efficiency measures and, by reducing demand for power by 15 percent, could also reduce carbon and sulphur dioxide emissions by almost 25 percent.
  • Further tightening of local environmental requirements might shift technology choices toward natural gas and nuclear and achieve reductions in the emissions of sulphur dioxide (59 percent) and carbon dioxide (28 percent), with only a small increase in costs. Developing Countries and Global Climate Change: Electric Power Options in Korea is the second in a series examining the electric power sectors in developing countries, and will be followed by four more case studies of India, China, Brazil, and Argentina. The report's findings are based on a lifecycle cost analysis of several possible alternatives to current projections for expanding the power system.

The Center was established in 1998 by the Pew Charitable Trusts to bring a new cooperative approach and critical scientific, economic, and technological expertise to the global climate change debate. The Pew Center believes that climate change is serious business and a better understanding of circumstances in individual countries helps achieve a serious response.   

Dong-Seok Roh
Jeffrey Logan
Jin-Gyu Oh
Jinwoo Kim
Sung Bong Jo
William Chandler
0
Syndicate content