Electricity

FutureGen 2.0

The first two weeks of August saw two big news items from the U.S. Department of Energy (DOE) related to carbon capture and storage (or CCS, for an overview of CCS see the our Climate TechBook CCS brief). First, on August 5, DOE announced its plans for FutureGen 2.0. One week later, President Obama’s Interagency Task Force on CCS delivered its final report and recommendations regarding overcoming “the barriers to the widespread, cost-effective deployment of CCS within 10 years, with a goal of bringing five to ten commercial demonstration projects online by 2016” (see the separate post regarding the task force’s report).

Why is this FutureGen announcement from DOE important? CCS is anticipated to be a key technology for achieving large reductions in U.S. and global greenhouse gas (GHG) emissions (for example, see the recent projection from the International Energy Agency that CCS could provide nearly one fifth of all global GHG emission reductions by mid-century). Initial commercial-scale CCS demonstration projects are a critical step in advancing CCS technology; these projects provide valuable experience and confidence in “scaling-up” CCS technologies and technology improvements and cost reductions from “learning by doing.” The aforementioned report from the Interagency Task Force on CCS notes that FutureGen is one of ten planned CCS demonstration projects supported by DOE (see Table V-2 of the task force’s report for the list of seven power-sector and three industrial CCS projects).

The FutureGen project has had a somewhat tumultuous history. In 2003, DOE announced its plan to work with an industry consortium on the FutureGen plant to demonstrate commercial-scale integrated gasification combined cycle (IGCC) technology coupled with (pre-combustion) CCS at a single new coal-fueled power plant (with DOE covering most of the project’s costs). In 2007, the industrial consortium selected a site in Mattoon, IL, for the FutureGen power plant. In 2008, though, DOE abandoned the idea citing the escalating cost estimates for the FutureGen project and decided instead to pursue cost-sharing agreements with project developers to support multiple CCS demonstration projects (this time with DOE covering a smaller fraction of project costs). DOE received only a small number of applications for this restructured FutureGen approach, and this change of plans came in for some criticism from the Government Accountability Office (the GAO report also provides a helpful overview and history of what might now be referred to as “FutureGen 1.0”).

In 2009, the Obama Administration revived plans for a single FutureGen plant and restarted work with the industrial consortium on preliminary design and other activities, promising a decision in 2010 on whether to move forward with the project. That decision came on August 5 and included another shift in DOE’s plans for the FutureGen project (now dubbed “FutureGen 2.0”). Energy Secretary Chu announced the awarding of $1 billion in Recovery Act funding for the repowering of an existing power plant in Meredosia, IL, as a coal-fueled power plant using oxy-combustion and CCS. With “FutureGen 2.0,” DOE decided to change from building a new plant to repowering an existing one and chose a different technology (oxy-combustion with CCS rather than IGCC with CCS).

When subsidizing initial CCS demonstration projects, policymakers should support a variety of relevant technologies and configurations. With respect to applying CCS technology to coal-fueled electricity generation, there are factors that are expected to make certain variants of CCS technology more appropriate for certain circumstances. These factors include the application of CCS with: new plants vs. retrofitting/repowering existing plants; different coal types; and various geologic formations for CO2 storage. Importantly, there are three types of CO2 capture technology—pre-combustion, post-combustion, and oxy-combustion—with the latter two appropriate for use at existing coal-fueled power plants (see our Climate TechBook CCS brief for details). 

With its new approach for “FutureGen 2.0” DOE has focused on large-scale demonstration of oxy-combustion. Of the ten CCS demonstration projects supported by DOE, FutureGen will be the only one to use the oxy-combustion technology. Of the 34 large-scale power plant CCS projects worldwide tracked by MIT, only four (counting FutureGen) use or plan to use oxy-combustion, and FutureGen will be the only such oxy-combustion project in the United States. Given the greater focus so far given to the two other alternative CCS approaches, oxy-combustion is likely the CCS technology that can most benefit from the FutureGen large-scale demonstration project.

With its new approach for “FutureGen 2.0,” DOE is taking an important step in demonstrating a portfolio of different CCS technologies. Such demonstrations, along with other supportive government RD&D policies, provide a critical “push” for low-carbon technologies. Long-term policy certainty (such as from a GHG cap-and-trade program) for the private sector regarding future GHG emission reduction requirements can provide the necessary technology “pull” to guide private investments in widespread deployment of CCS and other low-carbon technologies.

Steve Caldwell is a Technology and Policy Fellow

CCS Recommendations Hit President’s Desk

Last week, the Obama Administration’s Interagency Task Force on Carbon Capture and Storage (CCS) released its final report and recommendations. President Obama created the task force, co-chaired by the Department of Energy (DOE) and the Environmental Protection Agency (EPA) and involving 14 executive departments and federal agencies, in February. The President’s directive charged the task force with delivering “a proposed plan to overcome the barriers to the widespread, cost-effective deployment of CCS within 10 years, with a goal of bringing 5 to 10 commercial demonstration projects online by 2016.”

Nuclear Waste Commission, Yucca Mountain, and Loan Guarantees

Recent news has cast a spotlight on nuclear power. We’ve blogged before about nuclear power and its potential to play a large role in decarbonizing the electricity sector.

First among the big news items related to nuclear power is the official naming by the Obama Administration of a much-anticipated Blue Ribbon Commission on America’s Nuclear Future to recommend a safe, long-term solution for used nuclear fuel and nuclear waste. The commission, announced on January 29, will issue its final report within 24 months. Energy Secretary Chu noted that the commission is not tasked with recommending a site for a long-term waste repository.

Natural Gas and Our Energy Future

We just added a brief on natural gas to its Climate TechBook that helps to explain why natural gas is unique among fossil fuels. Natural gas is both a contributor to climate change (natural gas combustion accounts for about 16 percent of total U.S. greenhouse gas emissions) and an option for reducing emissions since natural gas is less carbon-intensive than coal and petroleum. The United States could actually reduce total greenhouse gas emissions by burning more natural gas if it’s displacing other fossil fuel use (this is particularly the case for fuel switching from coal to gas in power generation).

Like coal, but unlike petroleum, natural gas is primarily a domestic energy resource, with net imports of natural gas constituting only about 13 percent of U.S. consumption and about 90 percent of imports coming from North America. Unlike coal (93 percent consumed for electricity generation) and petroleum (more than two thirds used for transportation), natural gas consumption is more evenly split across the electric power, industrial, residential, and commercial sectors.

The past few years have seen a “revolution” in the outlook for natural gas supply. Until recently, experts thought that the United States would become increasingly dependent on expensive imports of liquefied natural gas (LNG) from overseas, but the recent boom in domestic “unconventional” gas production (driven by shale gas) and the dramatically increased estimate of U.S. gas reserves have led to projections of increasing domestic natural gas production and declining imports.

Natural gas is receiving a lot of attention in the discussion about U.S. climate and energy policy. The gas industry is pressing for favorable treatment in possible climate and energy legislation, with a specific set of policy priorities recently put forth by a major industry lobby group.

While some tout natural gas as a “bridge fuel” to a low-carbon future others fear that a “dash for gas” (i.e., fuel switching by electric power generators) could increase demand for and the price of natural gas, thus negatively impacting manufacturers that rely on natural gas for energy and as a feedstock.

Recent analysis by the U.S. Energy Information Administration (EIA) of the climate and energy bill passed by the House in June 2009, illustrates how the projected role of natural gas in reducing U.S. greenhouse gas emissions depends in large part on the use of offsets under cap and trade and the relative cost and commercial availability of low-carbon technologies (e.g., wind, solar, carbon capture and storage, and nuclear power). When low-carbon technology deployment and offsets are constrained, EIA finds a much heavier reliance on natural gas for electricity generation under cap and trade, but the new outlook on U.S. natural gas supply means that even this pessimistic scenario does not lead to major increases in projected natural gas prices.

A new modeling analysis from Resources for the Future (RFF) sought to quantify the implications of the dramatically expanded U.S. natural gas supply. RFF researchers found that without new energy and climate policy, more abundant and less expensive natural gas could actually mean slightly higher U.S. greenhouse gas emissions in 2030 than would otherwise be the case (as cheaper natural gas competes with non-emitting energy sources and increases total energy consumption).

This last point brings us back to the overarching importance of implementing a policy that puts a price on carbon, as a greenhouse gas cap-and-trade program would do. Putting a price on carbon would harness market forces to drive the deployment of a portfolio of low- and lower-carbon technologies and fuels, including increased natural gas use to the extent it can cost-effectively reduce emissions.

Steve Caldwell is a Technology and Policy Fellow

Smart Grid Boosts Efficiency, Renewables, and Reliability

The smart grid is a hot topic these days. President Obama touted the smart grid during his campaign and continues to be a booster. The 2009 stimulus bill (the American Recovery and Reinvestment Act, ARRA) provided nearly $4.5 billion to the Department of Energy (DOE) for smart grid investments. In October, DOE made $3.4 billion in awards under the Smart Grid Investment Grant Program, and, in November, DOE announced awards totaling $620 million as part of the Smart Grid Regional and Energy Storage Demonstration Project.

Last month, we added a smart grid factsheet to its Climate Techbook. While it’s not easy to give a short definition of the smart grid, one can think of it as the application of digital technology to the electric power sector to improve reliability, reduce cost, and increase efficiency. Smart grid technologies—including communication networks, advanced sensors, and monitoring devices—provide new ways for utilities to generate and deliver power and for consumers to understand and control their electricity consumption.

The smart grid has several anticipated benefits unrelated to climate change, such as improving electricity reliability (e.g., fewer power outages) and reducing utilities’ operating costs (e.g., by eliminating meter reading). Much of the buzz around the smart grid, however, has to do with the ways that smart grid technology can facilitate greenhouse gas emission reductions.

Efficiency, renewables, and  plug-in hybrid electric vehicles (PHEV) are three of the primary climate solutions the smart grid can enable. Initial evidence suggests that giving consumers direct feedback on their electricity use via smart meters and associated display devices can by itself lead to energy savings of 5-15 percent. One of the challenges that will become increasingly important as the United States relies more on renewable electricity from wind and solar power is that these resources are variable (i.e., they only generate electricity when the wind blows or the sun shines) rather than schedulable like traditional fossil fuel power plants. Smart grid technology makes it easier to add energy storage to the grid and to exploit demand response (e.g., cycling air conditioners on and off) to more easily balance electricity supply and demand as output from variable renewables fluctuates. Finally, smart grid technology would facilitate charging PHEVs during periods of low electricity demand (when generating costs are lowest and existing capacity is underutilized) so that PHEV charging can be done most cost-effectively.

Achieving greenhouse gas emission reductions at the lowest cost will require deploying a portfolio of energy efficiency measures and low-carbon energy technologies, several of which can build upon smart grid technology.

Steve Caldwell is a Technology and Policy Fellow

Embracing a Cleaner Coal Future

The role of coal in the future U.S. energy mix is a key issue in the Senate debate over climate legislation. Another senator has recently drawn attention to the importance of carbon capture and storage (CCS) technology to coal. On December 3, Senator Robert Byrd (D-WV) issued an opinion piece entitled “Coal Must Embrace the Future.”

West Virginia produces more coal than any state other than Wyoming and accounts for about 13.5 percent of total U.S. coal production. Coal-fueled power plants provide nearly 98 percent of West Virginia’s electricity. Coal mining accounts for about 6 percent of West Virginia’s state GDP and 3 percent of total state employment.

Senator Byrd’s opinion piece addresses issues related to mountaintop removal mining and climate change. Notably, on the question of climate change, Senator Byrd writes that:

To be part of any solution, one must first acknowledge a problem. To deny the mounting science of climate change is to stick our heads in the sand and say “deal me out.” West Virginia would be much smarter to stay at the table. The 20 coal-producing states together hold some powerful political cards.

Disinterested analyses (e.g, from MIT and EPRI) project coal with CCS to be a significant component of a least-cost portfolio of low-carbon energy technologies.  Coal currently provides nearly half of all U.S. electricity. Senator Byrd’s opinion piece reinforces the distinct importance of preserving a significant role for coal in a future U.S. energy supply in order to secure broad political support (i.e., at least 60 votes in the Senate) for action on climate change.

Senator Byrd earlier stated that he did not support the climate and energy bill passed by the House in June (H.R. 2454, the American Clean Energy and Security Act of 2009) “in its present form.” Our recent brief describes the significant investments the House energy and climate bill includes for demonstration and deployment of CCS with coal-fueled power plants. The senator does, however, highlight in his opinion piece that he has been working for the past six months with a group of coal state senators on provisions that could be included in a Senate climate and energy bill that would facilitate a transition to a low-carbon energy future for the coal industry.

In short, Senator Byrd’s opinion piece is a candid assessment of the situation as he sees it: the science supporting man-made climate change is clear; U.S. climate and energy legislation will pass eventually; cooperative, constructive engagement by coal state Senators in crafting such legislation is the best strategy for protecting the interests of their constituents.

Fittingly, one of the most advanced CCS projects in the world recently began operation in Senator Byrd’s home state—American Electric Power’s Mountaineer Plant Carbon Dioxide Capture & Storage Project.

Steve Caldwell is a Technology and Policy Fellow

Dorgan Delves Deeper into CCS

Not surprisingly, Senator Byron Dorgan (D-ND) is interested in carbon capture and storage (CCS) and its application to coal-fueled electricity generation. North Dakota gets almost 90 percent of its electricity from coal, and the state is the 10th largest producer of coal in the United States.

In mid-2008, Senator Dorgan convened a group of stakeholders with interest in CCS under the banner of a “Clean Coal and Carbon Capture and Sequestration Technology Development Pathways Initiative” (CCS Initiative) and asked them to provide input related to a number of key questions regarding CCS. Participants included representatives from the electric power industry, coal industry, manufacturing, labor, academics, and NGOs. The questions posed by the Senator focused on such issues as how much funding for CCS is required to ensure the technology is ready for broad deployment and how the United States can expand its cooperation with other key coal-producing and coal-consuming nations to accelerate international deployment of CCS.

On December 1, Senator Dorgan released a report prepared by the National Energy Technology Laboratory (NETL) that summarized input provided by the CCS Initiative participants.

Providing a Nuclear Boost

This week, Senators Lamar Alexander (R-TN) and Jim Webb (D-VA) released a bill intended, among other things, to dramatically expand the U.S. nuclear reactor fleet and, reportedly, to double the production of nuclear power in the United States by 2020.

In previous blog posts, we have highlighted what proposed climate and energy legislation in the House and Senate does for nuclear power. Many analyses, such as studies by the U.S. Environmental Protection Agency (EPA) and the Energy Information Administration (EIA), agree that the bulk of the most cost-effective initial greenhouse gas (GHG) emission reductions are found in the electricity sector and that nuclear power can play a key role in reducing GHG emissions from electricity generation as part of a portfolio of low-carbon technologies.

Putting a price on carbon, as a GHG cap-and-trade program would do, is likely the best option for expanding nuclear power generation since it makes the cost of electricity from nuclear and other low-carbon technologies more economical compared to traditional fossil fuel technologies. For example, in its analysis of the American Clean Energy and Security Act of 2009 (ACESA) passed by the House of Representatives in June of 2009, EIA projected that nuclear power might provide nearly twice as much electricity in 2030 as it does today.

A key challenge is cost. The construction of much of the existing nuclear fleet saw significant cost overruns and delays, which makes financing the first new plants after a hiatus of several decades difficult. Government loan guarantees can help the first-mover new nuclear power plants overcome the financing challenge. The demonstration of on-budget and on-time construction and operation by these first movers would facilitate commercial financing of subsequent plants.

Could the U.S. undertake a very large expansion of nuclear power? Nuclear power plants are massive undertakings, and a typical plant might cost on the order of $6 billion dollars and take 9-10 years to build from licensing through construction. Nonetheless, 17 applications for construction and operating licenses (COLs) for 26 new reactors are under review by the Nuclear Regulatory Commission (NRC)—all submitted since 2007. One can also look at the historical pace of nuclear power deployment in the United States for a sense of what might be reasonable once the nuclear industry ramps up. More than a third of the 100 gigawatts (GW) of nuclear generating capacity that provides a fifth of U.S. electricity came online in 1971-75, and more than 90 GW of U.S. nuclear power came online in the 1970s and 1980s.

One can see that putting a price on carbon, via cap and trade, will likely spur a significant expansion in U.S. nuclear power over the coming decades (as part of a portfolio of low-carbon technologies) facilitated by loan guarantees to support a few first-mover projects.

Steve Caldwell is a Technology and Policy Fellow

Towards a Climate-Friendly Built Environment

Buildings Cover

Towards a Climate-Friendly Built Environment

Prepared for the Pew Center on Global Climate Change
June 2005

By:
Marilyn Brown, Oak Ridge National Laboratory
Frank Southworth, Oak Ridge National Laboratory
Therese Stovall, Oak Ridge National Laboratory

Press Release

Download Report (pdf)

Read the In-Brief summarizing this report

Foreword

Eileen Claussen, President, Pew Center on Global Climate Change

Buildings in the United States – homes, offices, and industrial facilities – account for over 40 percent of our nation's carbon dioxide emissions. Most of these emissions come from the combustion of fossil fuels to provide heating, cooling, and lighting and to run electrical equipment and appliances. The manufacture of building materials and products, and the increased emissions from the transportation generated by urban sprawl, also contribute a significant amount of greenhouse gas (GHG) emissions every year. In this report, authors Marilyn Brown, Frank Southworth, and Theresa Stovall identify numerous opportunities available now, and in the future, to reduce the building sector's overall impact on climate. 

This Pew Center report is part of our effort to examine key sectors, technologies, and policy options to construct the "10-50 Solution" to climate change. The idea is that we need to tackle climate change over the next fifty years, one decade at a time. Looking at options for the near (10 years) and long (50 years) term, this report yields the following insights for reducing GHG emissions from the largest portion of our nation's physical wealth – our built environment.

  • This sector presents tremendous challenges. There are so many different energy end uses and GHG-relevant features, multiple stakeholders and decision-makers, and numerous market barriers to energy efficiency.
  • Yet numerous opportunities exist. In the near term, simply bringing current building practices up to the level of best practices would yield tremendous energy and cost savings. Past studies have shown that many climate-friendly and cost-effective measures in the buildings sector are not fully utilized in the absence of policy intervention. The R&D and six deployment policies examined in this report could reduce forecasted energy consumption and carbon emissions of buildings in the United States in 2025 by almost one-quarter, or by an amount roughly equal to 10% of total projected U.S. carbon emissions. In 2025 and beyond, newly constructed net-zero-energy homes and climate-friendly designs for large commercial buildings and industrial facilities could begin to generate sizeable GHG reductions by displacing the energy-intensive structures that embody today's standard practices.
  • An integrated approach is needed to reduce GHG emissions from the diverse and fragmented building sector. Such an approach coordinates across technical and policy solutions, integrates engineering approaches with architectural design, considers design decisions within the realities of building operation, integrates green building with smart-growth concepts, and takes into account the numerous decision-makers within the industry.
  • An expansive view of the building sector is needed to completely identify and capitalize on the full range of GHG-reduction opportunities. Such a view needs to consider future building construction (including life-cycle aspects of buildings materials, design, and demolition), use (including on-site power generation and its interface with the electric grid), and location (in terms of urban densities and access to employment and services).

The authors and the Pew Center would like to thank Robert Broad of Pulte Home Sciences, Leon Clarke of the Pacific Northwest Laboratory, Jean Lupinacci of the U.S. Environmental Protection Agency, and Steven Nadel of the American Council for an Energy Efficient Economy for their review of and advice on a previous draft of this report, and Tony Schaffhaeuser for contributions to an early version this paper.

Executive Summary

The energy services required by residential, commercial, and industrial buildings produce approximately 43 percent of U.S. carbon dioxide (CO2) emissions. Given the magnitude of this statistic, many assessments of greenhouse gas (GHG) reduction opportunities focus principally on technologies and policies that promote the more efficient use of energy in buildings. This report expands on this view and includes the effects of alternative urban designs; the potential for on-site power generation; and the life-cycle GHG emissions from building construction, materials, and equipment. This broader perspective leads to the conclusion that any U.S. climate change strategy must consider not only how buildings in the future are to be constructed and used, but also how they will interface with the electric grid and where they will be located in terms of urban densities and access to employment and services. The report considers both near-term strategies for reducing GHGs from the current building stock as well as longer-term strategies for buildings and communities yet to be constructed.

The United States has made remarkable progress in reducing the energy and carbon intensity of its building stock and operations. Energy use in buildings since 1972 has increased at less than half the rate of growth of the nation's gross domestic product, despite the growth in home size and building energy services such as air conditioning and consumer and office electronic equipment. Although great strides have been made, abundant untapped opportunities still exist for further reductions in energy use and emissions. Many of these-especially energy-efficient building designs and equipment-would require only modest levels of investment and would provide quick pay-back to consumers through reduced energy bills. By exploiting these opportunities, the United States could have a more competitive economy, cleaner air, lower GHG emissions, and greater energy security.

GHG Emissions: Sources and Trends

GHG emissions from the building sector in the United States have been increasing at almost 2 percent per year since 1990, and CO2 emissions from residential and commercial buildings are expected to continue to increase at a rate of 1.4 percent annually through 2025. These emissions come principally from the generation and transmission of electricity used in buildings, which account for 71 percent of the total. Due to the increase in products that run on electricity, emissions from electricity are expected to grow more rapidly than emissions from other fuels used in buildings. In contrast, direct combustion of natural gas (e.g., in furnaces and water heaters) accounts for about 20 percent of energy-related emissions in buildings, and fuel-oil heating in the Northeast and Midwest accounts for the majority of the remaining energy-related emissions. Based on energy usage, opportunities to reduce GHG emissions appear to be most significant for space heating, air conditioning, lighting, and water heating.

Mechanisms of Change

Because the building industry is fragmented, the challenges of promoting climate-friendly actions are distinct from those in transportation, manufacturing, and power generation. The multiple stakeholders and decision-makers in the building industry and their interactions are relevant to the design of effective policy interventions. Major obstacles to energy efficiency exist, including insufficient and imperfect information, distortions in capital markets, and split incentives that result when intermediaries are involved in the purchase of low-GHG technologies. Many buildings are occupied by a succession of temporary owners or renters, each unwilling to make long-term improvements that would mostly benefit future occupants. Regulations, fee structures in building design and engineering, electricity pricing practices, and the often limited availability of climate-friendly technologies and products all affect the ability to bring GHG-reducing technologies into general use. Some of these obstacles are market imperfections that justify policy intervention. Others are characteristics of well-functioning markets that simply work against the selection of low-GHG choices.

Numerous individual, corporate, community, and state initiatives are leading the implementation of "green" building practices in new residential development and commercial construction. The most impressive progress in residential green building development and construction is the result of communities and developers wanting to distinguish themselves as leaders in the efficient use of resources and in waste reduction in response to local issues of land-use planning, energy supply, air quality, landfill constraints, and water resources. Building owners and operators who have a stake in considering the full life-cycle cost and resource aspects of their new projects are now providing green building leadership in the commercial sector. However, real market transformation will also require buy-in from the supply side of the industry (e.g., developers, builders, and architects).

Affordability, aesthetics, and usefulness have traditionally been major drivers of building construction, occupancy, and renovation. In addition to climatic conditions, the drivers for energy efficiency and low-GHG energy resources depend heavily on local and regional energy supply costs and constraints. Other drivers for low-GHG buildings are clean air, occupant health and productivity, the costs of urban sprawl, electric reliability, and the growing need to reduce U.S. dependence on petroleum fuels.

Technology Opportunities in Major Building Subsectors

The technical and economic potential is considerable for technologies, building practices, and consumer actions to reduce GHG emissions in buildings. When studying the range of technologies, it is important to consider the entire building system and to evaluate the interactions between the technologies. Thus, improved techniques for integrated building analyses and new technologies that optimize the overall building system are especially important. In this report, homes and small commercial buildings and large commercial and industrial buildings are analyzed separately for their energy-saving and emission-reduction potential, because energy use in homes and small businesses is principally a function of climatic conditions while energy use in large buildings is more dependent on internal loads. 

Applying currently available technologies can cost-effectively save 30 to 40 percent of energy use and GHG emissions in new buildings, when evaluated on a life-cycle basis. Technology opportunities are more limited for the existing building stock, and the implementation rate depends on the replacement cycles for building equipment and components. However, several opportunities worth noting apply to existing as well as new buildings, including efficiencies in roofing, lighting, home heating and cooling, and appliances. Emerging building technologies, especially new lighting systems and integrated thermal and power systems, could lead to further cost-effective energy savings. All of these potential effects, however, are contingent upon policy interventions to overcome the barriers to change.

Community and Urban Subsystems

Evidence suggests that higher-density, more spatially compact and mixed-use building developments can offer significant reductions in GHG emissions through three complementary effects: (1) reduced vehicle miles of travel, (2) reduced consumption for space conditioning as a result of district and integrated energy systems, and (3) reduced municipal infrastructure requirements. Both behavioral and institutional barriers to changes in urban form are significant. The effect of urban re-design on travel and municipal energy systems will need to be tied to important developments in travel pricing, transportation construction, and other infrastructure investment policies.

Past studies have concluded conservatively that changes in land-use patterns may reduce vehicle miles traveled by 5 to 12 percent by mid-century. More compact urban development could also lead to comparable GHG reductions from efficiencies brought about by district and integrated energy systems, with a small additional decrement from a reduced need for supporting municipal infrastructures. In total, therefore, GHG reductions of as much as 3 to 8 percent may be feasible by mid-century, subject to the near-term enactment of progressive land-use planning policies.

Policy Options

Policy research suggests that public interventions could overcome many of the market failures and barriers hindering widespread penetration of climate-friendly technologies and practices. The mosaic of current policies affecting the building sector is complex and dynamic, ranging from local, state, and regional initiatives, to a diverse portfolio of federal initiatives. Numerous policy innovations could be added to this mix, and many are being tried in test-beds at the state and local level.

In this report, buildings energy research and development (R&D) and six deployment policies are reviewed that have a documented track record of delivering cost-effective GHG reductions and that hold promise for continuing to transform markets.   The six deployment policies include (1) state and local building codes, (2) federal appliance and equipment efficiency standards, (3) utility-based financial incentive and public benefits programs, (4) the low-income Weatherization Assistance Program, (5) the ENERGY STAR(r) Program, and (6) the Federal Energy Management Program. Annual energy savings and carbon-reduction estimates are provided for each of these policies, both retrospectively and prospectively. Summing these values provides a reasonable estimate of the past and potential future impacts of the policies.

Annual savings over the past several years from these R&D and six deployment policies are estimated to be approximately 3.4 quadrillion Btu (quads) and 65 million metric tons of carbon (MMTC), representing 10 percent of U.S. CO2 emissions from buildings in 2002. The largest contributors are appliance standards and the ENERGY STAR Program. Potential annual effects in the 2020 to 2025 time frame are 12 quads saved and 200 MMTC avoided, representing 23 percent of the forecasted energy consumption and carbon emissions of buildings in the United States by 2025. The largest contributors are federal funding for buildings energy R&D (especially solid-state lighting) and appliance standards.

Conclusions and Recommendations

The analysis presented in this report leads to several conclusions:

  • An expansive view of the building sector is needed to completely identify and exploit the full range of GHG-reduction opportunities. Such a view needs to consider future building construction (including life-cycle aspects of buildings materials, design, and demolition), use (including on-site power generation and its interface with the electric grid), and location (in terms of urban densities and access to employment and services).
  • There is no silver bullet technology in the building sector because there are so many different energy end uses and GHG-relevant features. Hence, a vision for the building sector must be seen as a broad effort across a range of technologies and purposes.
  • An integrated approach is needed to address GHG emissions from the U.S. building sector - one that coordinates across technical and policy solutions, integrates engineering approaches with architectural design, considers design decisions within the realities of building operation, integrates green building with smart-growth concepts, and takes into account the numerous decision-makers within the fragmented building industry.
  • Current building practices seriously lag best practices. Thus, vigorous market transformation and deployment programs are critical to success. They are also necessary to ensure that the next generation of low-GHG innovations is rapidly and extensively adopted.
  • Given the durable nature of buildings, the potential for GHG reductions resides mostly with the existing building stock for some time to come. However, by 2025, newly constructed net-zero-energy homes and climate-friendly designs for large commercial buildings and industrial facilities could begin to generate sizeable GHG reductions by displacing the energy-intensive structures that embody today's standard practices. By mid-century, land-use policies could have an equally significant impact on GHG emissions. This inter-temporal phasing of impacts does not mean that retrofit, new construction, and land-use policies should be staged; to achieve significant GHG reductions by 2050, all three types of policies must be strengthened as soon as politically feasible.
  • Similarly, applied R&D will lead to GHG reductions in the short run, while in the long run basic research will produce new, ultra-low GHG technologies. This does not mean that basic research should be delayed while applied R&D opportunities are exploited. The pipeline of technology options must be continuously replenished by an ongoing program of both applied and basic research.

By linking near-term action to long-term potential, the building sector can assume a leadership role in reducing GHG emissions in the United States and globally.

Conclusions

The energy services required by residential, commercial and industrial buildings produce approximately 43% of U.S. CO2 emissions. Additional GHG emissions result from the manufacture of building materials and products, the transport of construction and demolition materials, and the increased passenger and freight transportation associated with urban sprawl. As a result, an effective U.S. climate change strategy must consider options for reducing the GHG emissions associated with how buildings are constructed, used, and located.

Homes, offices, and factories rarely incorporate the full complement of cost-effective climate-friendly technologies and smart growth principles, despite the sizeable costs that inefficient and environmentally insensitive designs impose on consumers and the nation. To significantly reduce GHG emissions from the building sector, an integrated approach is needed-one that coordinates across technical and policy solutions, integrating engineering approaches with architectural design, considering design decisions within the realities of building operation, integrating green building with smart-growth concepts, and taking into account the timing of policy impacts and technology advances.

A. Technology Opportunities in the 2005 to 2025 Time Frame

In the short run, numerous green products and technologies could significantly reduce GHG emissions from buildings, assuming vigorous encouragement from market-transforming policies such as expanded versions of the six deployment policies studied here. In the coming decade, given the durable nature of buildings, the potential for GHG reductions resides mostly with the existing building stock and existing technologies. Some of the numerous promising off-the-shelf technologies and practices outlined in this report include reflective roof products, low-E coating for windows, the salvage and reuse of materials from demolished buildings, natural ventilation and air conditioning systems that separately manage latent and sensible heat, smart HVAC control systems, and variable speed air handlers.

Federally funded R&D for energy savings in buildings must also be expanded in the short term so that an attractive portfolio of new and improved technological solutions will be available in the mid and long term. Achieving the goal of a cost-competitive net-zero-energy home by 2020, for example, will require scientific breakthroughs to be incorporated into new and improved photovoltaic systems, power electronics, thermochemical devices, phase-change insulation and roofing materials, and other components. In addition, policies that promote higher-density, spatially compact, and mixed-use building developments must begin to counteract the fuel-inefficient impact of urban sprawl.

In the 2025 timeframe, newly constructed net-zero-energy homes and climate-friendly designs for large commercial buildings and industrial facilities will need to begin to displace the GHG-intensive structures that embody today's standard practices. The emerging technologies described in this report could help significantly reduce GHG emissions from the building sector including

  • sealing methods that address unseen air leaks,
  • electrochromic windows offering the dynamic control of infrared energy,
  • unconventional water heaters (solar, heat pump, gas condensing, and tankless),
  • inexpensive highly efficient nanocomposite materials for solar energy conversion,
  • thermoelectric materials that can transform heat directly into electrical energy,
  • solid state lighting that uses the emission of semi-conductor diodes to directly produce light at a fraction of the energy of current fluorescent lighting,
  • selective water sorbent technologies that offer the performance of ground-coupled heat pumps at the cost of traditional systems,
  • abundant sensors dispersed through buildings with continuously optimizing control devices, and
  • 80-90 percent efficient integrated energy systems that provide on-site power as well as heating, cooling, and dehumidification.

Market transformation policies are expected to continue to improve the existing building stock and play an essential role in ensuring the market uptake of new technologies. In addition, land-use policies could begin to have measurable benefits.

The analysis reported here suggests that six expanded market transformation policies-in combination with invigorated R&D-could bring energy consumption and carbon emissions in the building sector in 2025 back almost to 2004 levels. At the same time, the built environment will be meeting the needs of an economy (and associated homes, offices, hospitals, restaurants, and factories) that will have grown from $9.4 trillion in 2002 to $18.5 trillion in 2025.

B. Building Green and Smart in the 2050 Time Frame

Green building practices and smart growth policies could transform the built environment by mid-century. Some of the climate-friendly features of this transformed landscape that are outlined in this report include:

  • building efficiency measures that dramatically reduce the energy requirements of buildings;
  • high-performance photovoltaic panels, fuel cells, microturbines and other on-site equipment that produce more electricity and thermal energy than is required locally, making buildings net exporters of energy, thereby transforming the entire demand and supply chain in terms of energy generation, distribution, and end use;
  • higher-density communities that enable high-efficiency district heating and cooling;
  • gridded street plans and other compact and readily accessible local street systems that also enable mass transit, and pedestrian and cyclist-friendly pathways to displace other forms of travel;
  • parks and tree-lined streets to act as carbon sinks and to mitigate the "heat island" effect; and
  • in-fill and mixed-use land development to shorten trip distances while reducing infrastructure requirements.

In the long run, improving the locational efficiency of communities and urban systems could possibly have as large an impact on GHG emissions as improving the design, construction, and operation of individual structures.

C. Linking Near-Term Action with Long-Term Potential

Given the durable nature of buildings, the potential for GHG reductions resides mostly with the existing building stock for some time to come. However, by 2025, newly constructed net-zero-energy homes and climate-friendly designs for large commercial buildings and industrial facilities could begin to generate sizeable GHG reductions by displacing the energy-intensive structures that embody today's standard practices. By mid-century, land-use policies could also significantly reduce GHG emissions. This inter-temporal phasing of impacts does not mean that retrofit versus new construction versus land-use policies should be staged; to achieve significant GHG reductions by 2050, all three elements of an integrated policy approach must be strengthened in the near term.

Similarly, applied R&D will lead to GHG reductions in the short run, while basic research will take longer to produce new, ultra-low GHG technologies. This does not mean that fundamental research should be delayed while applied R&D opportunities are exploited. The pipeline of technology options must be continuously replenished by an ongoing program of both applied and basic research. Vigorous market transformation and deployment programs will be needed throughout the coming decades to shrink the existing technology gap and to ensure that the next generation of low-GHG innovations is rapidly adopted.

By linking near-term action with long-term potential in an expansive and integrated framework, the building sector can be propelled to a leadership role in reducing GHG emissions in the United States and globally.

Frank Southworth
Marilyn Brown
Therese Stovall
0

The U.S. Electric Power Sector and Climate Change Mitigation

Electricity Cover

U.S. Electric Power Sector and Climate Change Mitigation

Prepared for the Pew Center on Global Climate Change
June 2005

By:
Granger Morgan, Carnegie Mellon University
Jay Apt, Carnegie Mellon University
Lester Lave, Carnegie Mellon University

Press Release

Download Report (pdf)

Foreword

Eileen Claussen, President, Pew Center on Global Climate Change

The electricity sector in the United States enables almost every aspect of our economy—from agriculture, to manufacturing, to e-commerce. As witnessed during the California Energy Crisis and the 2003 blackout in the northeast and midwest, interruptions in the supply of electricity can be highly disruptive. It is hard to imagine a sector that is more important to our economy than electricity. But electricity also accounts for one third of our nation’s greenhouse gas emissions. In order to effectively address the climate challenge, we must significantly reduce greenhouse gas emissions associated with electricity production and use. In this report, authors Granger Morgan, Jay Apt, and Lester Lave identify numerous opportunities to decarbonize the U.S. electricity sector over the next 50 years.

This Pew Center report is part of our effort to examine key sectors, technologies, and policy options to construct the “10-50 Solution” to climate change. The idea is that we need to tackle climate change over the next fifty years, one decade at a time. Looking at options available now and in the future, this report yields the following insights for reducing GHG emissions from the electricity sector.

  • There are likely multiple pathways to a low-carbon future for the electricity sector, and most involve some portfolio of technological solutions. The continued use of coal with carbon capture and sequestration; increased efficiency in the generation, transmission and end use of electricity; renewable and nuclear power generation; and other technologies can all contribute to a lower-carbon electric sector. Yet, all of these technologies face challenges: Cost, reliability, safety, siting, insufficient public and private funds for investment, and market and public acceptance are just some of the issues that will need to be resolved.
  • A major effort is needed to develop and deploy commercially available low-carbon technologies for the electric sector over time. The lower-carbon efficiency and generation technologies available and competitive in the market today are probably insufficient to decarbonize the electricity sector over the next few decades. Given the magnitude of the challenges the industry faces in coming decades, it is critical that the United States—both the public and private sectors—develops and maintains dramatically expanded R&D. Near-term and long-term R&D investments will help ensure that we have technologies to enable a low-carbon electricity sector.
  • It is critical that we start now to embark on the path to a lower-carbon electric sector. A decarbonization of the electricity sector could be achieved in the next 50 years through increased efficiency and fuel-switching in the near term, and a gradual deployment of lower-carbon technologies over the next several decades. Over the long term, GHG reductions will be achieved at lower cost if climate considerations are incorporated into the industry’s investment decisions today. Voluntary efforts to reduce GHG emissions will not be enough, especially given the current uncertainty in the industry. A clear timetable for regulation of GHG emissions is essential—a timetable that begins in the near future.

The authors and the Pew Center would like to thank Severin Borenstein of the University of California Energy Institute, Ralph Cavanagh of the Natural Resources Defense Council, and Tom Wilson of EPRI for their review of and advice on a previous draft of this report.

Executive Summary

Measured by environmental impact and economic importance, the electricity industry is one of the most important sectors of the American economy. The generation of electricity is responsible for 38 percent of all U.S. carbon dioxide (CO2) emissions and one third of all U.S. greenhouse gas (GHG) emissions. This sector is the largest single source of these emissions. It is also the largest source of sulfur dioxide (SO2), oxides of nitrogen (NOX), small particles, and other air pollutants.

At the same time, electricity is critical to the U.S. economy. Recent annual national expenditures on electricity totaled $250 billion—making the electricity sector’s share of overall GDP larger than that of the automobile manufacturing industry and roughly equal in magnitude to that of the telecommunications industry. Expenditures alone, however, understate the importance of electricity to the U.S. economy. Nearly every aspect of productive activity and daily life in a modern economy depends on electricity for which there is, in many cases, no close substitute. As the most desirable form of energy for many uses, electricity use has grown faster than GDP. The Internet and computers would not operate without very reliable, high-quality electricity. Electricity also plays a major role in delivering modern comforts and easing household tasks, from running heating and cooling systems to washing clothes and dishes. It plays an even more important role in the commercial, manufacturing, and agricultural sectors, where it provides lighting and powers a variety of machines. In short, it is hard to imagine a modern economy functioning without large amounts of reliable, high-quality electricity.

The economic and environmental importance of the electric power industry is, moreover, likely to grow in coming decades. Electricity demand has increased steadily over the last three decades and is projected to continue rising in the future, despite ongoing improvements in end-use efficiency. The industry, meanwhile, has undergone dramatic structural changes over the last 10 years, moving from a system of monopolies subject to state price regulation to a mixed system that now includes some elements of market competition in many states. After declining for 75 years, electricity prices have risen since 1970, making expenditures for carbon control a difficult proposition in the absence of mandatory GHG policy. The uncertain state of electricity market restructuring efforts around the country, particularly since the California crisis of 2001-2002, has increased perceptions of investor risk and sharply raised the cost of borrowing for capital investments by investor-owned utilities.

In this context, reconciling growing demand for affordable and reliable electricity supplies with the need for substantial reductions in GHG and criteria pollutant emissions presents a significant challenge for policy-makers and for the electricity industry itself. Indeed, even if worldwide growth in demand for electric power ceased today, the industry’s current level of emissions is not sustainable. Stabilizing atmospheric carbon dioxide concentrations at twice the level of pre-industrial times is likely to require emissions reductions of 65-85 percent below current levels by 2100. Clearly, reductions of this magnitude can be achieved only by taking action globally and across all sectors of the economy.1 But the electricity sector will undoubtedly need to assume a major share of the burden—in the United States and worldwide—given its centralized structure and contribution to overall emissions.

This report explores the electric power industry’s options for reducing its GHG emissions over the next half century. Those options include new technologies that are still being developed—such as coal gasification with carbon capture and sequestration—as well as strategies that rely on existing technologies at different stages of commercial and technical readiness (such as nuclear and renewable generation), lower-carbon fuels (like natural gas), and efficiency improvements (both at the point of electricity production and end use). Many of these options, in addition to reducing CO2 emissions, also reduce conventional air pollutants.

Although a power generating plant has a lifetime of 30-50 years, low-carbon technologies could claim a substantial fraction of the generation mix by mid-century—in time to help stabilize atmospheric GHG concentrations within the next century or two. Some of these technologies, such as coal-based integrated gasification and combined cycle (IGCC) generation, still need to overcome basic cost, reliability, and market-acceptance hurdles; others, such as carbon capture and sequestration, have yet to be demonstrated on a large scale. Still others, such as wind, nuclear, or even (given recent fuel price increases) natural gas combined cycle power, are relatively well developed but face constraints in terms of siting, public acceptability, cost, or other factors.

Nevertheless, the analysis presented in this report suggests that substantial GHG reductions could be achieved by the power sector—without major impacts on the economy or on consumer lifestyles—through the gradual deployment of lower-carbon options over the next several decades. At the same time, more immediate emissions reductions can be achieved through lowering demand by increasing the efficiency with which electricity is used; substituting natural gas for coal; improving efficiency at existing plants including highly efficient combined heat and power systems at suitable sites; expanding deployment of renewable generation technologies, including biomass co-firing of coal plants; and through the use of carbon offsets such as forestry projects and methane capture and collection. These immediate measures can reasonably be expected to reduce electricity growth and expand low-carbon electricity production in the United States from its 28 percent share in 2003, while also reducing emissions from higher-carbon generators.

While initial steps to limit electricity sector CO2 emissions will have only a modest impact on total U.S. emissions, steady and deliberate efforts to promote long-term technological change in this sector eventually could produce significant climate benefits, given the industry’s share of current emissions. The dollar cost of achieving GHG reductions will depend to a significant extent on which of several possible technology pathways emerge as both feasible and cost-effective in the decades ahead. Increasing the efficiency with which electricity is used is important to any energy future. In one scenario, the successful commercialization of carbon capture and sequestration technology would allow for continued use of fossil fuels in combination with somewhat increased reliance on similarly priced wind resources. In another scenario, a new generation of nuclear technology proves acceptable and plays an expanded role in meeting future electricity needs. Future emissions reductions might need to be achieved chiefly through increased reliance on relatively more expensive natural gas and renewable energy. Some forms of renewable energy can certainly play a role, but just how large a role depends on a range of uncertain issues in terms of cost, technical performance, and power system architecture. A major scale-up of renewable energy would likely require a greatly enhanced transmission network and expensive energy storage technologies to compensate for the remoteness and intermittency of much of the wind and solar resource base. These issues will be resolved only through further research and expanded field experience.

In all cases, however, long-term reductions will be achieved at lower cost if climate considerations are incorporated into the industry’s investment decisions sooner rather than later. Building another round of conventional pulverized coal plants that comply with new pollution control requirements for SO2, NOX, particulate matter, mercury, and other toxic emissions, but that later need to be scrapped, or retrofitted with costly and inefficient CO2 scrubbers, would likely be the most costly path.

To ensure that climate considerations figure in the industry’s planning decisions and to provide effective market incentives for investment in low-carbon technologies, a clear timetable for the regulation of GHG emissions is essential. Many industry experts and utility executives see such regulations as inevitable over the next 10-20 years, but cannot—without some certainty about future regulation—justify added expenditures for low-carbon technologies today, either to their shareholders or to state regulators concerned about the local economic impacts of higher-priced power. Voluntary efforts to reduce CO2 emissions simply will not be sufficient in an increasingly cost-competitive and risk-averse market. If, however, GHG emission limits are implemented in concert with other pollution control requirements, long-term air quality and climate objectives will be achieved more quickly and at lower total cost than under a piecemeal approach.

Four major policy recommendations emerge from the findings in this report concerning prospects for a long-term transition to a low-carbon electricity power sector:

  • Establish a firm regulatory timetable for reducing CO2 emissions from the electricity industry that parallels the timetable for reducing discharges of conventional pollutants. To assure that emissions targets are met at minimum cost, they should be set well in advance and should be implemented using market-based mechanisms such as a cap-and-trade system or a carbon tax. Avoiding high costs later requires accounting for CO2 in current investment decisions and technology choices.
  • Address the most serious institutional and regulatory barriers to the development of low-carbon and carbon-free energy technologies by implementing policies aimed at: (1) developing an adaptive regulatory framework for managing geologic carbon sequestration, in order to provide an alternative (coal gasification with carbon capture) to building new conventional coal plants; (2) determining if it is feasible to mitigate the safety, proliferation, and waste-management concerns that currently inhibit the expansion of nuclear power; (3) facilitating the adoption of cost-effective low- or no-carbon renewable technologies such as wind and biomass and promoting distributed resources and micro-grids—that is, clusters of small, modular generators interconnected through a low-voltage distribution system that can function either in concert with, or independent of, the larger grid; and (4) creating financial arrangements that decrease the risk penalty assigned by investors to new capital in the restructured era that have tended to discourage major electricity industry investments and that present further hurdles to the deployment of new technologies.
  • Promote greater end-use efficiency through policies that encourage power companies to invest in cost-effective, demand-side energy savings. Impose stricter federal efficiency standards for appliances and buildings (as detailed in the Pew Center report, Towards a Climate Friendly Built Environment) and promote the deployment of efficient combined heat and power systems. California has succeeded in slowing per capita electricity demand growth significantly through a variety of efficiency initiatives; these and other programs should be examined to estimate their potential to reduce demand more broadly and to identify “best practices” that can be documented and implemented elsewhere.
  • Create a federal requirement that all parties in the electricity industry invest at least one percent of their value added in R&D in order to explore how promising new technologies can solve the difficult reliability, efficiency, security, environmental, cost, and other problems facing the industry. Firms should have the choice to make the investments themselves or contribute to a fund managed by the U.S. Department of Energy. In parallel with this industry mandate, the Department of Energy needs to develop a more effective program of needs-based research into power generation and storage, electricity transmission and distribution, conservation, demand management, and other electric power technologies and systems.

Conclusions

The path to a low-carbon future for the electricity sector poses a range of challenges. As France has demonstrated, nuclear power is a known technology that could produce such a future, but nuclear power faces a number of major problems including high cost, low public acceptance, and risks of proliferation. Large-scale fuel switching to natural gas could lead to substantial reductions in CO2 emissions, though not their complete elimination, but it would be expensive and probably adversely impact the nation’s energy independence. Carbon capture and sequestration holds the promise that it could allow continued use of America’s enormous coal reserves. While likely affordable and technically feasible, it has yet to be demonstrated on a large scale and faces open questions of cost and reliability. Some forms of renewable energy can certainly play a role, but just how large that role can be depends on a range of uncertain issues in terms of cost, technical performance, and power system architecture. These issues will be resolved only through further research and expanded field experience. Conservation and load management hold great potential, but to date regulators and political decision makers have not advanced these solutions with the vigor that is needed. Clearly there are multiple paths to success, most involving some portfolio of these solutions. Today our best option is to work hard to advance the most promising, in the hopes that several ultimately prove to be technically, economically, and politically feasible.

The electricity industry’s investment decisions are unlikely to favor low-carbon options unless and until a clear regulatory timetable for limiting CO2 emissions is established. Absent such a timetable, aging pulverized coal units will likely be retrofitted with add-on controls for SO2, NOX, and mercury and could continue operating for decades with no provision for CO2 abatement. This could lead to a situation where more drastic CO2 reductions must be achieved over a shorter timeframe in the future, potentially at far higher cost.

Environmental issues generally, and global warming concerns in particular, have focused attention on a number of major challenges to the current U.S. electricity system. Industry restructuring, underinvestment in transmission infrastructure and other system assets, under-utilization of currently available low-carbon electricity generation sources, reliability and security issues, and insufficient R&D funding interact to cloud the future of this vital sector of the U.S. economy. Under any future scenario, this complex set of issues must be addressed in a manner that accounts for the hybrid—half restructured and half traditionally-regulated—nature of the industry. The elements that matter most now are:

  • An end to regulatory uncertainty regarding future CO2 control. Establishing clear and consistent policy goals sooner rather than later and implementing these goals through mechanisms such as a cap-and-trade system with scheduled cap reductions will avoid very significant costs.
  • Development efforts focusing on promising technologies that do not require fundamental breakthroughs, such as IGCC with carbon capture and sequestration for coal as well as natural gas.
  • Adoption of best practices for promoting energy conservation and improved efficiency.
  • A federal requirement that electricity industry companies spend at least one percent of their value added on research to develop critical enabling technologies and to address core questions that are likely to be crucial in determining which of several possible technology paths the industry should follow in the future. Examples include making carbon capture and sequestration feasible and determining whether cost-effective electricity storage options can be developed for intermittent resources like wind and solar.

Properly managed, it should be possible to accomplish the transition to a low-carbon electricity future at manageable cost and with little disruption to the U.S. economy. But the United States must initiate that transition now.

About the Authors

M. Granger Morgan
Carnegie Mellon University

M. Granger Morgan is Professor and Head of the Department of Engineering and Public Policy at Carnegie Mellon University where he is also University and Lord Chair Professor in Engineering. He is also a Professor in the Department of Electrical and Computer Engineering and in The H. John Heinz III School of Public Policy and Management.

Morgan's research addresses problem in science, technology and public policy. Much of it has involved the development and demonstration of methods to characterize and treat uncertainty in quantitative policy analysis. He works on risk analysis, management and communication; on problems in the integrated assessment of global change; on improving health, safety, and environmental regulation; on energy systems, focused particularly on electric power; and on several other topics in technology and public policy. His books, published by Cambridge University Press, on Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis (1990 with Max Henrion) and Risk Communication: A mental models approach (2002 with Baruch Fischhoff, Ann Bostrom, and Cynthia J. Atman) are widely cited as providing the definitive treatment of these topics.

At Carnegie Mellon, Morgan directs the new NSF Center on Climate Decision Making and co-directs, with Lester Lave, the Carnegie Mellon Electricity Industry Center.

Morgan serves as Chair of the EPA Science Advisory Board, Chair of the EPRI Advisory Council, and Chair of the Scientific and Technical Council for the International Risk Governance Council (based in Geneva, Switzerland). He is a Fellow of the AAAS, the IEEE, and the Society for Risk Analysis.

He holds a BA from Harvard College (1963) where he concentrated in Physics, an MS in Astronomy and Space Science from Cornell (1965) and a Ph.D. from the Department of Applied Physics and Information Sciences at the University of California at San Diego (1969).

Jay Apt
Carnegie Mellon University

Jay Apt is Executive Director of the Carnegie Mellon Electricity Industry Center at Carnegie Mellon University's Tepper School of Business and the CMU Department of Engineering and Public Policy, where he is a Distinguished Service Professor.

He received an A.B. from Harvard College in 1971 and a Ph.D. in experimental atomic physics from the Massachusetts Institute of Technology in 1976. His research interests are in economics, engineering, and public policy aspects of the electricity industry, economics of technical innovation, management of technical enterprises, risk management in policy and technical decision framing, and engineering systems design.

He received the Metcalf Lifetime Achievement Award for significant contributions to engineering in 2002 and the National Aeronautics and Space Administration's Distinguished Service Medal in 1997.

Lester B. Lave
Carnegie Mellon University

Lester B. Lave is University Professor and Higgins Professor of Economics at Carnegie Mellon University, with appointments in the Business School, Engineering School, and the Public Policy School. He has a BA from Reed College and a Ph.D. from Harvard University.

He was elected to the Institute of Medicine of the National Academy of Sciences and is a past president of the Society for Risk Analysis. He has acted as a consultant to many government agencies and companies. He has received research support from a wide range of federal and state agencies, as well as foundations, nongovernmental organizations, and companies.

Lave is the director of the CMU university-wide Green Design Institute and is co-director of the CMU Electricity Industry Center. His research is focused on applying economics to public policy issues, particularly those related to energy in general and electricity in particular.

Granger Morgan
Jay Apt
Lester Lave
0
Syndicate content