An Effective Approach to Climate Change


An Effective Approach to Climate Change

By Eileen Claussen

Enhanced online at
Originally published October 29, 2004: VOL 306 SCIENCE

The Bush Administration’s “business as usual” climate change policy (1), with limited R&D investments, no mandates for action, and no plan for adapting to climate change, is inadequate. We must start now to reduce emissions and to spur the investments necessary to reduce future emissions. We also need a proactive approach to adaptation to limit the severity and costs of climate change impacts.

Science and Economics

Those who are opposed to national climate change policies make much of the uncertainties in climate models, specifically the rate and magnitude of global warming. The Climate Change Science Program’s plan, points out Secretary Abraham, would address these uncertainties, although he offers no assurances that the program will be adequately funded. However, the scientific community already agrees on three key points: global warming is occurring; the primary cause is fossil fuel consumption; and if we don’t act now to reduce greenhouse gas (GHG) emissions, it will get worse.

Yes, there are uncertainties in future trends of GHG emissions. However, even if we were able to stop emitting GHGs today, warming will continue due to the GHGs already in the atmosphere (2).

National climate change policy has not changed significantly for several years. The first President Bush pursued a strategy of scientific research and voluntary GHG emissions reductions. The new Climate Change Science Program has a budget comparable, in inflation-adjusted dollars, to its predecessor, the Global Climate Research Program, during the mid-1990s. The Administration’s current GHG intensity target will increase absolute emissions roughly 14% above 2000 levels and 30% above 1990 levels by 2010 (3). These increases will make future mitigation efforts much more difficult and costly.

While reducing uncertainty is important, we must also focus on achieving substantial emissions reductions and adapting to climate change.

Low-Carbon Technology Development

The Administration’s more substantive R&D initiatives, such as Hydrogen Fuels and FutureGen (clean coal) are relatively modest investments in technologies that are decades away from deployment. We need a far more vigorous effort to promote energy efficient technologies; to prepare for the hydrogen economy; to develop affordable carbon capture and sequestration technologies; and to spur the growth of renewable energy, biofuels, and coal-bed methane capture.

Equally important, we need to encourage public and private investment in a wide-ranging portfolio of low-carbon technologies. Despite the availability of such technologies for energy, transportation, and manufacturing, there is little motivation for industry to use them. Widespread use of new technology is most likely when there are clear and consistent policy signals from the government (4).

One-fifth of U.S. emissions comes from cars and trucks (5). The Administration’s targets to improve fuel economy for light trucks and “sports utility” vehicles (SUVs) by 1.5 miles per gallon over the next three model years fall far short of what is already possible. California is setting much more ambitious emission standards for cars and light trucks. Current efficiency standards can be improved by 12% for subcompacts to 27% for larger cars without compromising performance (5).Hybrid vehicles can already achieve twice the fuel efficiency of the average car.

About one-third of U.S. emissions results from generating energy for buildings (6). Policies that increase energy efficiency using building codes, appliance efficiency standards, tax incentives, product efficiency labeling, and Energy Star programs, can significantly reduce emissions and operating costs. Policies that promote renewable energy can reduce emissions and spur innovation.Sixteen states have renewable energy mandates (7).

The Power of the Marketplace

Policies that are market driven can help achieve environmental targets cost-effectively. A sustained price signal, through a cap-and-trade program, was identified as the most effective policy driver by a group of leaders from state and local governments, industry, and nongovernmental organizations (NGOs) (8).

Senators Lieberman (D–CT) and McCain’s (R–AZ) 2003 Climate Stewardship Act proposes a market-based approach to cap GHG emissions at 2000 levels by 2010. The bill, opposed by the Administration, garnered the support of 44 Senators. Nine Northeastern states are developing a regional “cap-and-trade” initiative to reduce power plant emissions. An important first step would be mandatory GHG emissions reporting.

Adapting to Climate Change

An important issue that Secretary Abraham failed to address is the need for anticipating and adapting to the climate change we are already facing. Economic sectors with long-lived investments, such as water resources, coastal resources, and energy may have difficulty adapting (9). A proactive approach to adaptation could limit the severity and costs of the impacts of climate change.

By limiting emissions and promoting technological change, the United States could put itself on a path to a low-carbon future by 2050, cost-effectively. Achieving this will require a much more explicit and comprehensive national commitment than we have seen to date. The rest of the developed world, including Japan and the European Union, is already setting emission-reduction targets and enacting carbon-trading schemes. Far from “leading the way” on climate change at home and around the world, as Secretary Abraham suggested, the United States has fallen behind.

References and Notes

1. S. Abraham, Science 305, 616 (2004). |
2. R. T. Wetherald, R. J. Stouffer, K. W. Dixon, Geophys. Res. Lett. 28, 1535 (2001).
3. “Analysis of President Bush’s climate change plan” (Pew Center on Global Climate Change,Arlington,VA, February 2002); available at
4. J. Alic, D. Mowery, E. Rubin, “U.S. technology and innovation policies: Lessons for climate change” (Pew Center on Global Climate Change,Arlington,VA, 2003).
5. National Research Council, “The effectiveness and impact of corporate average fuel economy (CAFÉ) standards” (National Academies Press, Washington, DC, 2002).
6. “U.S. greenhouse gas emissions and sinks: 1990–2002”(EPA/430-R-04-003, Environmental Protection Agency, Washington, DC, 2002), Table 3–6.2002.
7. Workshop proceedings, “The 10-50 solution: Technologies and policies for a low-carbon future,”Washington, DC, 25 and 26 March 2004 (The Pew Center on Global Climate Change and the National Commission on Energy Policy, Arlington,VA, in press).
8. J. Smith, “A synthesis of potential climate change impacts on the United States” (Pew Center on Global Climate Change, Arlington,VA, 2004). Published by AAAS