Climate Compass Blog

Building an Electric Vehicle Here in the USA

In tackling climate change, a diverse transportation sector can contribute greatly to reducing greenhouse gas (GHG) emissions. In 2008, the transportation sector accounted for 28% of U.S. GHG emissions, according to the EIA. In achieving the goal of reducing emissions, transportation policy must reduce GHG emissions from travel without compromising the mobility of Americans. To that end, electric vehicles provide a much-needed alternative to gasoline and diesel powered cars.

Carmakers are responding to this challenge by designing plug-in electric vehicles (PHEVs) and all electric vehicles (EVs). Nissan’s Leaf, a new electric vehicle, is slated to hit showrooms throughout the U.S in late 2010. One of two Leafs seen in public was on display last week at the Washington Auto Show where the Green Car Journal named the Leaf its 2010 Green Car Vision Award winner.

Nissan Leaf

At first, Nissan will likely place prospective buyers on a waiting list, but it anticipates ramping up Leaf production at a factory it is retooling in Smyrna, Tennessee. The company secured a $1.4 billion loan from the U.S. Department of Energy (DOE) last week to prepare the plant to manufacture the vehicles and the advanced batteries that will power them. DOE points out that the facility will “create up to 1,300 American jobs and conserve up to 65.4 million gallons of gasoline per year.” The 150,000 vehicle-per-year factory positions the U.S. as a leader in the next generation of low-emissions vehicle manufacturing.

At the DC auto show, the Nissan representative shared details about the vehicle along with the company’s program to distribute it worldwide. Nissan is partnering with Better Place, an innovative electric vehicle services provider, to sell the Leaf in Denmark and Israel in 2011. The company intends to make modifications to the Leaf’s chassis to support Better Place’s battery switch stations. The Leaf will also meet SAE’s J1772 standard for electric vehicle charging. Lastly, by laminating the lithium-ion battery packs in order to make them self-cooling, Nissan solved a complex technical problem without using a computer control system. More information about the Leaf is available on Nissan’s website.

The L.A. Time reports Nissan hints at a sticker price of less than $30,000, before accounting for the $7,500 federal tax credit for plug-in hybrid vehicles and electric vehicles provided in the Recovery Act. No pricing information was available at the auto show. 

The three most important issues to Americans today are the economy, jobs, and terrorism according to the Pew Research Center for the People & the Press. If one makes the logical connection between protecting against terrorism and promoting energy security, Nissan is timely in releasing the Leaf in 2010. With the Leaf, the company will create American jobs to manufacture an affordable vehicle that lowers U.S. dependence on foreign oil.

Nick Nigro is a Solutions Fellow

We Need an Innovation War, Not a Trade War

In a letter to Secretaries Clinton, Geithner, and Locke, Attorney General Holder, and US Trade Representative Kirk, 19 business groups, including the National Association of Manufacturers, argue that new “indigenous innovation” programs are designed by the Chinese government to find “national champions” of industry that can be advantaged in a variety of sectors, including green technology, and create "barriers to competition."  The Hillicon Valley technology blog over at The Hill notes that this concern comes in the context of rising trade conflicts between the United States and China. 

This attention comes on the heels of increasing concern over China’s leadership in clean energy technology. As noted in this weekend’s New York Times piece on the subject, the country has become the world’s largest manufacturer of wind and solar generation equipment.  Through industrial policy, China is trying to take advantage of the growing export market for power sector equipment of all types, especially clean energy.

We should have expected that China would be a strong competitor in the clean energy sector.  Regardless of the outcome of continuing international climate negotiations, countries from Europe to most U.S. states to China itself have already made unilateral policy choices to increase the use of clean energy technology in the coming decades for a multitude of reasons.  The demand will be tremendous for the manufacture of clean energy technologies, and there is potential for fortunes to be made in their export.

What should the appropriate policy response be?  As the authors of the letter suggest, the US should promote fair access for American goods and services in foreign markets.  Protectionist responses and trade wars have never helped any country grow its economy and create jobs.

But reducing protectionism is not enough to regain the American lead in the clean energy sector.  The US needs to have a policy of its own that encourages innovation and gives the right incentives for US companies to compete globally.  America is a land of innovation, and we should be the ones taking advantage of these new and growing markets, not ceding them to competitors.  Part of the answer is for the US to put a price on carbon. Doing so would encourage innovation in the private sector and provide regulatory certainty for companies to make investments here in clean energy technologies.  American ingenuity is second to none, and Congress needs to work on a climate and energy bill that provides the right framework for our businesses to flourish.

Michael Tubman is a Congressional Affairs Fellow

Copenhagen Accord: Act II

The fuller significance of the Copenhagen Accord became a little clearer this week – and a little murkier too.

The nonbinding deal struck six weeks ago by a couple dozen world leaders left open two immediate questions: exactly which countries would be signing on to it, and just what targets or actions they would be promising.  The parties gave themselves until January 31 to fill in those blanks.

Update: It’s so cold! What happened to global warming?

Science Q&A

The cold weather continues across much of the Unites States, Europe, and central Asia as the Arctic Oscillation remains in a strong “negative” state, forcing cold Arctic air down to the mid-latitudes. A couple of weeks ago I explained why more frequent heavy snowfall events could be a consequence of global warming for mid-latitude areas near large bodies of water, like Washington, D.C., and Syracuse, New York (see figure).

The average amount of annual snowfall has been increasing in Syracuse, New York, for most of the past century. (SOURCE: Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming? Journal of Climate vol. 16, pp. 3535-3342, Figure 1)

On January 31, I noticed a forecast for lake-effect snowfall around the Great Lakes on Weather.com:  “Lake-effect snows are also possible near the central and western Great Lakes today and tonight.”

Natural Gas and Our Energy Future

We just added a brief on natural gas to its Climate TechBook that helps to explain why natural gas is unique among fossil fuels. Natural gas is both a contributor to climate change (natural gas combustion accounts for about 16 percent of total U.S. greenhouse gas emissions) and an option for reducing emissions since natural gas is less carbon-intensive than coal and petroleum. The United States could actually reduce total greenhouse gas emissions by burning more natural gas if it’s displacing other fossil fuel use (this is particularly the case for fuel switching from coal to gas in power generation).

Like coal, but unlike petroleum, natural gas is primarily a domestic energy resource, with net imports of natural gas constituting only about 13 percent of U.S. consumption and about 90 percent of imports coming from North America. Unlike coal (93 percent consumed for electricity generation) and petroleum (more than two thirds used for transportation), natural gas consumption is more evenly split across the electric power, industrial, residential, and commercial sectors.

The past few years have seen a “revolution” in the outlook for natural gas supply. Until recently, experts thought that the United States would become increasingly dependent on expensive imports of liquefied natural gas (LNG) from overseas, but the recent boom in domestic “unconventional” gas production (driven by shale gas) and the dramatically increased estimate of U.S. gas reserves have led to projections of increasing domestic natural gas production and declining imports.

Natural gas is receiving a lot of attention in the discussion about U.S. climate and energy policy. The gas industry is pressing for favorable treatment in possible climate and energy legislation, with a specific set of policy priorities recently put forth by a major industry lobby group.

While some tout natural gas as a “bridge fuel” to a low-carbon future others fear that a “dash for gas” (i.e., fuel switching by electric power generators) could increase demand for and the price of natural gas, thus negatively impacting manufacturers that rely on natural gas for energy and as a feedstock.

Recent analysis by the U.S. Energy Information Administration (EIA) of the climate and energy bill passed by the House in June 2009, illustrates how the projected role of natural gas in reducing U.S. greenhouse gas emissions depends in large part on the use of offsets under cap and trade and the relative cost and commercial availability of low-carbon technologies (e.g., wind, solar, carbon capture and storage, and nuclear power). When low-carbon technology deployment and offsets are constrained, EIA finds a much heavier reliance on natural gas for electricity generation under cap and trade, but the new outlook on U.S. natural gas supply means that even this pessimistic scenario does not lead to major increases in projected natural gas prices.

A new modeling analysis from Resources for the Future (RFF) sought to quantify the implications of the dramatically expanded U.S. natural gas supply. RFF researchers found that without new energy and climate policy, more abundant and less expensive natural gas could actually mean slightly higher U.S. greenhouse gas emissions in 2030 than would otherwise be the case (as cheaper natural gas competes with non-emitting energy sources and increases total energy consumption).

This last point brings us back to the overarching importance of implementing a policy that puts a price on carbon, as a greenhouse gas cap-and-trade program would do. Putting a price on carbon would harness market forces to drive the deployment of a portfolio of low- and lower-carbon technologies and fuels, including increased natural gas use to the extent it can cost-effectively reduce emissions.

Steve Caldwell is a Technology and Policy Fellow