U.S. States & Regions

States and regions across the country are adopting climate policies, including the development of regional greenhouse gas reduction markets, the creation of state and local climate action and adaptation plans, and increasing renewable energy generation. Read More

Elliot Diringer's Statement on Hurricane Sandy

Statement from Elliot Diringer
Executive Vice President, Center for Climate and Energy Solutions

Oct. 29, 2012

Hurricane Sandy is a stark reminder of the rising risks of climate change. While climate change didn’t cause the hurricane, a number of warming-related factors may well be intensifying its impact.

Higher ocean temperatures, in this case 5 degrees above normal, contribute to heavier rainfall. Higher sea level means stronger storm surges. And new research suggests that Arctic melting may be increasing the risk of the kind of atmospheric traffic jam that is driving Sandy inland.

But whatever’s behind it, Sandy clearly highlights our vulnerabilities to extreme weather. We’ve loaded the dice and events we once thought of as rare are becoming more common.

At a minimum, this is another foretaste of what we face in a warming world. It tells us two things: We’d better do all we can to reduce the risks by reducing our carbon emissions, and we’d better strengthen our defenses against future impacts that it’s already too late to avoid.

To get in touch with a C2ES science expert, contact Laura Rehrmann at rehrmannl@c2es.org or 703-774-5480.

About C2ES

The Center for Climate and Energy Solutions (C2ES) is an independent nonprofit, nonpartisan organization promoting strong policy and action to address the twin challenges of energy and climate change. Launched in November 2011, C2ES is the successor to the Pew Center on Global Climate Change.

California Cap and Trade

Download our California Cap-and-Trade Brief as a PDF


California recently launched its cap-and-trade program, which uses a market-based mechanism to lower greenhouse gas emissions. California’s program is second in size only to the European Union’s Emissions Trading System based on the amount of emissions covered. In addition to driving emission cuts in the ninth largest economy in the world, California’s program will provide critical experience in how an economy-wide cap-and-trade system can function in the United States.

California’s emissions trading system will reduce greenhouse gas emissions from regulated entities by more than 16 percent between 2013 and 2020. It is a central component of the state’s broader strategy to reduce total greenhouse gas emissions to 1990 levels by 2020. 

The cap-and-trade rules came into effect on January 1, 2013 and apply to large electric power plants and large industrial plants. In 2015, they will extend to fuel distributors (including distributors of heating and transportation fuels). At that stage, the program will encompass around 360 businesses throughout California and nearly 85 percent of the state’s total greenhouse gas emissions. As of January 1, 2014, California's program is linked to that of Québec.

Under a cap-and-trade system, companies must hold enough emission allowances to cover their emissions, and are free to buy and sell allowances on the open market. California held its first auction of greenhouse gas allowances on November 14, 2012. This marked the beginning of the first greenhouse gas cap-and-trade program in the United States since the group of nine Northeastern states in the Regional Greenhouse Gas Initiative (RGGI), a greenhouse gas cap-and-trade program for power plants, held its first auction in 2008.

Page Contents

Cap-and-Trade Basics

California Cap-and-Trade Details

California’s Overall Climate Change Program

Auction Revenue

California Cap and Trade in Context

Cap-and-Trade Linkage

Additional resources on other market-based GHG programs around the globe


Additional Resources

Cap-and-Trade Basics

A cap-and-trade system is one of a variety of policy tools to reduce the greenhouse gas emissions responsible for climate change. A cap-and-trade program sets a clear limit on greenhouse gas emissions and minimizes the total costs to emitters while achieving the target. This limit is translated into tradable emission allowances (each allowance typically equivalent to one metric ton of carbon dioxide or carbon dioxide equivalent), which are auctioned or allocated to regulated emitters on a regular basis. At the end of each compliance period, each regulated emitter must surrender enough allowances to cover its actual emissions during the compliance period. The total number of available allowances decreases over time to reduce the total amount of greenhouse gas emissions. By creating a market, and a price, for emission reductions, the cap-and-trade system offers an environmentally effective and economically efficient response to climate change.

Ultimately, cap-and-trade programs offer opportunities for the most cost-effective emissions reductions. However, many challenging issues must be addressed before initiating a cap-and-trade program. Once established, a well-designed cap-and-trade market is relatively easy to implement, can achieve emission reductions goals in a cost-effective manner, and drives low-greenhouse gas innovation.

For more information on cap and trade, visit the main C2ES cap-and-trade page.

Back to Contents

California Cap-and-Trade Details

California’s program represents the first multi-sector cap-and-trade program in North America. Building on lessons from the northeast Regional Greenhouse Gas Initiative (RGGI) and the European Union Emission Trading Scheme (EU-ETS), the California program blends proven market elements with its own policy innovations. These policy elements, and other relevant details of California’s cap-and-trade program, are summarized in Table 1 below.
The California Air Resources Board (CARB) adopted the state’s cap-and-trade rule on October 20, 2011, and will implement and enforce the program. The cap-and-trade rules will first apply to electric power plants and industrial plants that emit 25,000 metric tons of carbon dioxide equivalent (CO2e) per year or more. In 2015, the rules will also apply to fuel distributors (including distributors of heating and transportation fuels) that meet the 25,000 metric ton threshold, ultimately affecting a total of around 360 businesses throughout California. The program imposes a greenhouse gas emission limit that will decrease by two percent each year through 2015, and by three percent annually from 2015 through 2020. (See Figure 2)
Emission allowances will be distributed by a mix of free allocation and quarterly auctions. The portion of emissions covered by free allowances will vary by industry, but initially will account for approximately 90 percent of a business’s overall emissions. The percentage of free allowances allocated to the businesses will decline over time. A business may also buy allowances from other entities that have reduced emissions below the amount of allowances held. These policy elements, and other relevant details of California’s cap-and-trade program, are summarized in Table 1 below.

Table 1: California Cap-and-Trade Details


Details and Discussion

Status of Regulation

Legal Status

California Air Resources Board (CARB) adopted final regulations on October 20, 2011. An amended regulation, featuring a variety of minor adjustments, was adopted on September 12, 2012.

Legal Authority

Authorized by California Global Warming Solutions Act of 2006 (AB 32)

AB 32 requires California to return to 1990 emission levels by 2020 (427 million metric tons (MMT) of carbon dioxide equivalent (CO2e) whereas business-as-usual would be 507 MMT)

Lawsuit: Regulation does not go far enough

The Association of Irritated Residents (AIR) sued CARB, claiming cap and trade was not fully justified as a policy decision relative to a carbon tax or direct emission limits. After adding justification to the regulatory record, the court approved CARB’s approach. 

Lawsuit: Allowance auctions constitute a taxImmediately preceding California’s first allowance auction, the California Chamber of Commerce filed a lawsuit alleging that AB 32 does not give CARB the authority to raise revenue from allowance auctions, and that all allowances must therefore be freely allocated. Alternatively, the California Chamber of Commerce argues that if AB 32 did attempt to grant this authority, it would constitute a tax, which requires approval from two-thirds of the legislature. AB 32 did not receive two-thirds approval. 

Lawsuit: Regulation goes too far

A lawsuit is anticipated that claims CARB is unconstitutionally attempting to regulate interstate commerce because the program will look outside of state borders to assign greenhouse gas reduction obligations to imported electricity. 

Start Date

Regulation went into effect on January 1, 2012

The first auction took place on November 14, 2012

Compliance obligations began on January 1, 2013

Regulation Coverage

Threshold of Coverage

Sources that emit at least 25,000 metric tons CO2e/year are subject to regulation

Gases Covered

The six gases covered by the Kyoto Protocol

(CO2, CH4, N2O, HFCs, PFCs, SF6)

Plus NF3 and other fluoridated greenhouse gases

Sectors Covered: Phase 1 (2013-2014)

Electricity generation, including imports

Industrial sources

Covers approximately 35% of California’s total greenhouse gas emissions (approximately 160 MMT)

(See Figures 1 and 2 below)

Sectors Covered: Phase 2


Includes sectors covered in Phase 1, plus:

Distributors of transportation fuel

Distributors of natural gas

Distributors of other fuel

Covers approximately 85% of California’s total greenhouse gas emissions (approximately 395 MMT)

(See Figures 1 and 2 below)

Point of Regulation

Electricity generators (within California)

Electricity importers

Industrial facility operators

Fuel distributors

Allowance Allocation

Distribution Method



Free allocation for electric utilities (not generators), industrial facilities and natural gas distributors

Free allocation amount declines over time

Other allowances must be purchased at auction or via trade

Allocation Methodology

Industry: Based on output and sector-specific emissions intensity benchmark that rewards efficient facilities, initially set at about 90% of average emissions and declining over time; free allocation to leakage-prone industries declines relatively less over time

Electricity: Based on long-term procurement plans

Natural gas: To be determined by CARB before 2015; proposed to be based on 2011 emissions


Quarterly, single round, sealed bid, uniform price

Price minimum: $10 in 2012, rising 5% annually over inflation

Investor-owned utilities must consign their free allowances to be sold at auction; must use proceeds for ratepayer benefit

Auctions will be held jointly with Québec starting in 2014

Additional information, including auction results, can be found here

Emission Targets / Allowance Availability

162.8 MMT in 2013 (electricity and industry)

394.5 MMT in 2015 (includes all covered sectors)

334.2 MMT in 2020 (15% reduction between 2015 and 2020)

(See Figure 2 below)

Market Flexibility


A participating entity may bank allowances for future use and these allowances will not expire. However, regulated entities are subject to holding limits, restricting the maximum number of allowances that an entity may bank at any time. The holding limit quantity is based on a multiple of the entity’s annual allowance budget


Borrowing of allowances from future years is not allowed

Offsets: Quantity

Allowed for 8% of total compliance obligation. Note that 8% refers to the total amount of allowances held by an entity; not the amount of reduction required by an entity. Thus more than 8% of the program’s reductions can occur through offsets

Offsets: Protocols

Offsets must comply with CARB-approved protocols. Protocols currently exist for: forestry, dairy digesters, ozone depleting substances projects, and urban forestry. Initially limited to projects in the U.S.; framework in place for international expansion. All offset projects developed under a CARB Compliance Offset Protocol must be listed with an ARB approved Offset Project Registry. To date the American Carbon Registry (ACR) and Climate Action Reserve are the two approved registries.

Strategic Reserve

A percentage of allowances, which increases over time from 1% to 7%, will be held in a strategic reserve by CARB in three tiers with different prices: $40, $45, $50 in 2013, rising 5% annually over inflation. Since these prices are not subject to market forces, the strategic reserve will help constrain compliance costs.

Compliance Period

3-year compliance periods (following 2-year Phase 1)

Emissions Reporting and Verification


Capped entities must report annually (as required since 2008)


Capped entities must register with CARB to participate in allowance trading market


Reported emissions will be verified by a third party.

Compliance and Enforcement

Annual Obligation

Entities must provide allowances and/or offsets for 30% of their previous year’s emissions

Compliance Period Obligation

At the end of every compliance period, entities must provide allowances and/or offsets for balance of emissions from the entire compliance period (2 years for the first period, 3 years for the next 2 periods).


If a deadline is missed or there is a shortfall, four allowances must be surrendered for every metric ton not covered in time.

Trading and Enforcement

The regulation expressly prohibits any trading involving a manipulative device, a corner of or an attempt to corner the market, fraud, attempted fraud, or false or inaccurate reports.

Violations of the regulations can result in civil or criminal penalties. Perjury statutes apply.

The program includes mechanisms to prevent market manipulation



California’s program is linked with Québec's as ofJanuary 1, 2014. Offsets and allowances can be traded across jurisdictions. The first joint auction will be held some time in 2014.

Western Climate Initiative (WCI)

Other WCI partners (British Columbia, Manitoba, Ontario) plan to eventually join the linked program as well

Other Jurisdictions

CARB is open to linking with additional state or regional programs


Figure 1: California Greenhouse Gas Emissions by Sector in 2011

Emissions are expressed in million metric tons of carbon dioxide equivalent (MMT CO2e) and percent of total. Total 2011 gross emissions were 448.1 MMT CO2e. Note that “Residential and Commercial” equates to heating fuel consumption, which is covered starting in 2015.

Source: CARB, Greenhouse Gas Inventory Data – Graphs


Figure 2: California’s greenhouse gas emission cap and business-as-usual (BAU) projections

The cap-and-trade program has a “narrow” scope in 2013 and 2014 that encompasses the electricity and industrial sectors. The program expands in 2015 to encompass transportation and heating fuels. Offsets can be used for up to eight percent of each regulated entity’s compliance obligation.

Source: CARB, California Cap-and-Trade Regulation Initial Statement of Reasons, Appendix E: Setting the Program Emissions Cap, http://www.arb.ca.gov/regact/2010/capandtrade10/capv3appe.pdf

Back to contents

California’s Overall Climate Change Program

California’s cap-and-trade program is only one element of its broader climate change initiative, as authorized in the California Global Warming Solutions Act of 2006 (AB 32).  AB 32 seeks to slow climate change through a comprehensive program reducing greenhouse gas emissions from virtually all sources statewide. The Act requires CARB to develop regulations and market mechanisms that will cut the state’s greenhouse gas emissions to 1990 levels by 2020—a 25 percent reduction statewide. Figure 3 shows California’s projected greenhouse gas emissions growth in the absence of cap and trade.

Figure 3: California Greenhouse Gas Emissions in 1990, 2011, and 2020 under Business-as-Usual

Sources: 1990: California Energy Commission, Inventory of Greenhouse Gas Emissions and Sinks: 1990 to 2004, http://www.energy.ca.gov/2006publications/CEC-600-2006-013/CEC-600-2006-013-SF.PDF; CARB, California 1990 Greenhouse Gas Emissions Level and 2020 Emissions Limit, http://www.arb.ca.gov/cc/inventory/pubs/reports/staff_report_1990_level.pdf.

2011: CARB, California Greenhouse Gas Inventory for 2000-2011 – by Category as Defined in the Scoping Plan, http://www.arb.ca.gov/cc/inventory/data/tables/ghg_inventory_scopingplan_00-11_2013-08-01.pdf.

2020: CARB, Greenhouse Gas Emission Forecast for 2020: Data Sources, Methods, and Assumptions, http://www.arb.ca.gov/cc/inventory/data/tables/2020_forecast_methodology_2010-10-28.pdf.

AB 32 also requires CARB to take a variety of actions aimed at reducing the state’s impact on the climate. CARB has adopted a portfolio of measures to reduce greenhouse gas emissions in the state, including a Low Carbon Fuel Standard and a variety of energy efficiency standards. The cap under CARB’s cap-and-trade rule is flexible and can be tightened if CARB’s other measures reduce greenhouse gas emissions less than anticipated. California’s cap-and-trade program therefore acts as a backstop to ensure its overall 2020 greenhouse gas target is met. Figure 4 shows the programs CARB is implementing to achieve the goals of AB 32 and the projected impact of each.

Figure 4: Projected Reductions (in MMT CO2e) Caused by AB 32 Measures by 2020 and Share of Total

Source: CARB, Greenhouse Gas Reductions from Ongoing, Adopted and Foreseeable Scoping Plan Measures, http://www.arb.ca.gov/cc/inventory/data/tables/reductions_from_scoping_plan_measures_2010-10-28.pdf

For more information on actions taken by CARB in response to AB 32, visit the C2ES AB 32 page or the status of CARB’s AB 32 Scoping Plan.

Back to contents

Auction Revenue

Although a significant number of emission allowances will be freely allocated in California’s program, many will also be sold at auction. The first year of auctions generated over $525 million in revenue for the state. The state anticipates annual auction revenue to rise over time. On September 30, 2012, Governor Jerry Brown signed two bills into law, establishing guidelines on how this annual revenue will be disbursed. The two laws do not identify specific programs that will benefit from the revenue, but they provide a framework for how the state will invest cap-and-trade revenue into local projects. California’s first quarterly cap-and-trade GHG allowance auction took place on November 14, 2012. About 29 million greenhouse gas allowances, each representing one metric ton of carbon dioxide, were auctioned off in this first auction to more than 600 approved industrial facilities and electricity generators.

The first law, AB 1532, requires that the revenue from allowance auctions be spent for environmental purposes, with an emphasis on improving air quality. The second, SB 535, requires that at least 25 percent of the revenue be spent on programs that benefit disadvantaged communities, which tend to suffer disproportionately from air pollution. The California Environmental Protection Agency will identify disadvantaged communities for investment opportunities, while the state’s Department of Finance will develop a three-year investment plan and oversee the expenditures of this revenue to mitigate direct health impacts of climate change.

More information about how the proceeds from California's cap-and-trade program will be used can be found here.

Back to contents

California Cap and Trade in Context

Prior to California's program, greenhouse gas cap-and-trade programs were operating in the European Union, Australia, New Zealand, and in nine Northeastern states (the Regional Greenhouse Gas Initiative, or RGGI). As of 2013, California and Quebec have operating programs as well. Table 2 below compares key elements of the California, RGGI, EU-ETS, and Quebec cap-and-trade systems.

Table 2: Comparison of cap-and-trade programs in California, RGGI, EU-ETS, and Quebec


California's Greenhouse gas cap-and-trade program

Regional Greenhouse Gas Initiative (RGGI)

EU's Emissions Trading System

Quebec's Carbon Market


38 million

41 million

500 Million

8 Million

Gross Regional Product

US $1.9 trillion

US $2.3 trillion

US $16 trillion

US $304 billion

Participating Jurisdictions


9 US States: CT, DE, MA, MD, ME, NH, NY, RI, VT

30 Nations.  Mandatory for all 27 EU members plus Norway, Iceland and Lichtenstein


Greenhouse Gases Covered

Carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulfur hexafluoride (SF6), perfluocarbons (PFCs), nitrogen trifluoride (NF3), other fluorinated greenhouse gases

Carbon dioxide (CO2) only

Carbon dioxide (CO2), plus nitrous oxide (N2O) and perfluorocarbons (PFCs) starting in 2013

Carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulfur hexafluoride (SF6), perfluocarbons (PFCs), nitrogen trifluoride (NF3), other fluorinated greenhouse gases

Sectors Covered

Electricity (including imports) and industry in 2013; plus ground transportation and heating fuels in 2015

Fossil fuel-fired power plants (does not include imports)

Electricity, heat and steam production, and five major industrial sectors (oil, iron and steel, cement, glass, pulp and paper) 2005-2012; plus CO2 from petrochemicals, ammonia, aviation and aluminum, N2O from acid production, and PFCs from aluminum starting in 2013

Electricity (including imports) and industry in 2013; plus ground transportation and heating fuels in 2015

Emissions Threshold

Emitters of at least 25,000 metric tons CO2e annually

Fossil fuel-fired power plants generating 25 MW or greater located within the RGGI States

Any combustion installation over 20 MW; sector-specific threshold for other sources

Emitters of at least 25,000 metric tons CO2e annually


Approximately 17% below 2013 emissions by 2020

15% below 2013 emissions by 2020 

21% cut below 2005 levels by 2020

20% below 1990 levels by 2020. Considering raising target to 25%

2013 Allowance Budgets (Millions of Allowances)



(short tons)



Maximum Emissions Covered in million metric tons of CO2 equivalent (Year of Maximum Allowance Availability)

394.5 (2015)

171 (2009) (includes New Jersey, which has since exited the program)

2039 (2013)

63.3 (2015)

Emissions Target in million metric tons of CO2 equivalent (Target Year)

334.2 (2020)

71 (2020)

1643 (2020)  -   Target may become more aggressive

51 (2020)


First auction on November 14, 2012; compliance obligations began January 1, 2013

Compliance obligations began on January 1, 2009

Compliance obligations began on January 1, 2005

Compliance obligations began January 1, 2013

Allocation Method

Mixed – some free allocations for industry; auctions for others

Approximately 90% available for sale at auction, remainder up to states

Mixed - some free allocation for industry based on benchmarking; auction for power sector and others that can pass on costs; EU sets broad harmonization rules, but members have some flexibility; approximately 50% auction in 2013

Free allocation for some sectors, auctions for others

Price Floor at Auction

$10 per metric ton for both 2012 and 2013 before
rising 5% per year (plus inflation) starting in 2014. 

$1.93 per ton in 2012; increasing with consumer price index (CPI)

No Price Floor

$10 per metric ton price floor starting in 2012 and rising 5% for each year
thereafter (plus inflation)


Helped establish Western Climate Initiative in 2007


UNFCCC, Kyoto Protocol

Joined Western Climate Initiative in 2008

Linkage Status

Linked with Quebec starting in 2014

No current plans to link

Plans to link with Australia in 2018. Also helping China design their market

Linked with California in 2014

Offset Limit

Can account for 8% of a regulated entity’s compliance obligation

Can account 3.3% of a regulated entity’s compliance obligation

No limit;  considering setting limits after 2020

Can account for 8% of a regulated entity’s compliance obligation

2013 Offset Use Limit  (Millions of Offset Credits)



No limit;  considering setting limits after 2020


Types of Offset Categories

1) U.S. Forest and Urban Forest Project Resources;
2) Livestock Projects;
3) Ozone Depleting Substances Projects;
4) Urban Forest Projects

1) Landfill methane capture and destruction;
2) Reduction in emissions of sulfur hexafluoride (SF6) in the electric power sector;
3) Sequestration of carbon due to afforestation;
4) Reduction or avoidance of CO2 emissions from natural gas, oil, or propane end-use combustion due to end-use energy efficiency in the building sector;
5) Avoided methane emissions from agricultural manure management operations

1)  Clean Development Mechanism (CDM);
2) Some Joint Implementation (JI) project types are eligible, those from land use, land-use change and forestry activities are not acceptable;
Starting in 2013 (third phase), HFC and adipic acid credits will be excluded.

1)   Covered Manure Storage Facilities – CH4 Destruction;
2)  Landfill Sites – CH4 Destruction;
3)   Destruction of Ozone Depleting Substances (ODS) Contained in Insulating Foam
Recovered from Appliances


Back to Contents

Additional resources on other market-based greenhouse gas programs around the globe:





New Zealand



South Korea

Back to contents

Cap-and-Trade Linkage

California is part of the Western Climate Initiative (WCI), which also includes British Columbia, Manitoba, Ontario and Quebec. WCI partners are working together with a goal of eventually creating a linked cap-and-trade program that covers each jurisdiction. When Governor Schwarzenegger signed an agreement establishing the initiative on February 26, 2007, California became one of the original participants of the initiative. WCI Partners have developed a comprehensive initiative to reduce regional greenhouse gas emissions to 15 percent below 2005 levels by 2020. Quebec is currently the only other jurisdiction in WCI that is implementing cap and trade in the near-term, and its first compliance period began on January 1, 2013.

In October 2013 CARB and the Quebec Ministry of Sustainable Development, Environment, Wildlife, and Parks officially linked their greenhouse gas cap-and-trade programs. As a result, greenhouse gas emission allowances from California and Quebec will be interchangeable for compliance purposes starting on January 1, 2014. California and Quebec’s link represents the first multi-sector cap-and-trade program linkage in North America. The partnership aims to create a gateway and framework for greater international greenhouse gas reductions.

This step came after years of work to coordinate the two programs. CARB had to align its program with Quebec’s and prove to Governor Brown that Quebec’s program is stringent enough to meet California’s requirements. Quebec also had to draft amendments to its regulations in order to harmonize with California’s reporting scheme. Both CARB and its parallel agency in Quebec adopted regulations necessary to link their programs in spring 2013. 

WCI, Inc. Home Page


Back to contents


Allowance: A government-issued authorization to emit a certain amount. In greenhouse gas markets, an allowance is commonly denominated as one ton of CO2e per year. The total number of allowances distributed to all entities in a cap-and-trade system is determined by the size of the overall cap on emissions.

Allowance distribution: The process by which emissions allowances are initially distributed under an emissions cap-and-trade system. Authorizations to emit can initially be distributed in a number of ways, either through some form of auction, free allocation, or some of both.

Auctioning: A method for distributing emission allowances in a cap-and-trade system whereby allowances are sold to the highest bidder. This method of distribution may be combined with other forms of allowance distribution.

Banking: The carry-over of unused allowances or offset credits from one compliance period to the next.

Benchmarking: An allowance allocation method in which allowances are distributed based upon a specified level of emissions per unit of input or output.

Borrowing: A mechanism under a cap-and-trade program that allows covered entities to use allowances designated for a future compliance period to meet the requirements of the current compliance period. Borrowing may entail penalties to reflect a programmatic preference for near-term emissions reductions.

Business-as-Usual: In the absence of the regulation being discussed. This term is used to assess the future impacts of a regulation.

Cap and Trade: A cap-and-trade system sets an overall limit on emissions, requires entities subject to the system to hold sufficient allowances to cover their emissions, and provides broad flexibility in the means of compliance. Entities can comply by undertaking emission reduction projects at their covered facilities and/or by purchasing emission allowances (or credits) from the government or from other entities that have generated emission reductions in excess of their compliance obligations.

Carbon Dioxide Equivalent: Carbon dioxide equivalent is a measure used to compare the emissions from various greenhouse gases based upon their global warming potential. For example, the global warming potential for methane over 100 years is 21. This means that emissions of one million metric tons of methane is equivalent to emissions of 21 million metric tons of carbon dioxide.

Compliance period:  The time frame for which regulated emitters surrender enough allowances to cover their actual emissions during that time frame.

Credits: Credits can be distributed by the government for emission reductions achieved by offset projects or by achieving environmental performance beyond a regulatory standard.

Emissions Cap: A mandated constraint in a scheduled timeframe that puts a “ceiling” on the total amount of anthropogenic greenhouse gas emissions that can be released into the atmosphere.

Emissions Trading: The process or policy that allows the buying and selling of credits or allowances created under an emissions cap.

Global Warming Potential (GWP): A measure of the total energy that a gas absorbs over a particular period of time (usually 100 years), compared to carbon dioxide.

Greenhouse Gases (GHG): Greenhouse gases include a wide variety of gases that trap heat near the Earth’s surface, slowing its escape into space. Greenhouse gases include carbon dioxide, methane, nitrous oxide and water vapor and other gases. While greenhouse gases occur naturally in the atmosphere, human activities also result in additional greenhouse gas emissions. Humans have also manufactured some greenhouse gases not found in nature (e.g., hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride).

High GWP: Gases with high global warming potential (GWP). There are three major groups or types of high GWP gases: hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6). These compounds are the most potent greenhouse gases. In addition to having high global warming potentials, SF6 and PFCs have extremely long atmospheric lifetimes, resulting in their essentially irreversible accumulation in the atmosphere once emitted.

Kyoto Protocol: An international agreement signed at the Third Conference of the Parties to the UN Framework Convention on Climate Change in Kyoto, Japan (December 1997). The Protocol sets binding emission targets for industrialized countries that would reduce their collective emissions by 5.2 percent, on average, below 1990 levels by 2012.

Leakage: A reduction in emissions of greenhouse gases within a jurisdiction that is offset by an increase in emissions of greenhouse gases outside the jurisdiction. For example, if a regulated facility moves across the border to continue operations unchanged rather than reducing its emissions.

Linking: Authorization by the regulator for entities covered under a cap-and-trade program to use allowances or offsets from a different jurisdiction’s regulatory regime (such as another cap-and-trade program) for compliance purposes. Linking may expand opportunities for low-cost emission reductions, resulting in lower compliance costs.

Offset: Projects undertaken outside the coverage of a mandatory emissions reduction system for which the ownership of verifiable greenhouse gas emission reductions can be transferred and used by a regulated source to meet its emissions reduction obligation. If offsets are allowed in a cap and trade program, credits would be granted to an uncapped source for the net emissions reductions a project achieves. A capped source could then acquire these credits as a method of compliance under a cap.

Price Trigger: A general term used to describe a price at which some measure will be taken to stabilize or lower allowance prices. For example, through 2013 RGGI used price triggers to expand the amount of offsets that could be used for compliance.

Program Review (RGGI): The Memorandum of Understanding among RGGI states calls for a 2012 Program Review. This Program Review, now complete, was a comprehensive evaluation of program success, program impacts, additional reductions, imports and emissions leakage, and offsets.

Scope: The coverage of a cap-and-trade system, i.e., which sectors or emissions sources will be included.

Sealed Bid (Auction): A type of auction process in which all bidders simultaneously submit sealed bids to the auctioneer, so that no bidder knows how much the other auction participants have bid.

Single Round (Auction): Bids for allowances are all solicited and settled in a single round. Auction participants can submit multiple bids for this single round. For example, a participant could bid $15 per allowance for 10,000 allowances and $20 per allowance for a separate 20,000 allowances.

Source: Any process or activity that results in the net release of greenhouse gases, aerosols, or precursors of greenhouse gases into the atmosphere.

True-up:  A submission of emission allowances equivalent to a regulated entity’s emissions during a compliance period, less what the entity has already submitted at interim deadlines.

Uniform Price (Auction): All allowances awarded in a single auction will be the same price. Allowances will be sold to bidders, beginning with the highest bid price and moving to successively lower priced bids, until all of the available allowances are sold. The bid at which all available allowances are sold becomes the settlement price and this is the price per allowance that all bidders will be charged for the allowances won in the auction.  Bids submitted at prices below the settlement price will not win any allowances.

Western Climate Initiative (WCI):  A collaboration launched in February 2007 to meet regional challenges raised by climate change. WCI is identifying, evaluating and implementing collective and cooperative ways to reduce greenhouse gases in the region. Membership in the WCI presently consists of California, British Columbia, Manitoba, Ontario, and Quebec.

Back to contents

Additional Resources

C2ES: California Global Warming Solutions Act

C2ES: Climate Change 101: Cap and Trade

C2ES: Multi-State Initiatives

C2ES: Summary of Cap-and-Trade Rule Text

CARB: Latest Text of Cap-and-Trade Rule

CARB: Cap-and-Trade Home Page

CARB: Cap-and-Trade Auction Results

CARB: Cap-and-Trade Fact Sheet

CARB: Climate Change Home Page

Back to contents


Joint ICAP/NA2050 Public Workshop: Developing Industrial Benchmarks

Promoted in Energy Efficiency section: 
North America 2050 (NA2050), which C2ES helps facilitate, and the International Carbon Action Partnership (ICAP) co-hosted a public workshop featuring policymakers and representatives from industry, academia, and nonprofits from around the globe to share experiences and ideas on how benchmarking can be used to improve industrial energy efficiency. Power Point slides from the event are available. 

Joint ICAP/NA2050 Public Workshop

“Developing Industrial Benchmarks”

September 24, 2012 – New York

Pace University, 1 Pace Plaza, NY 10038


Jump to Workshop Presentations


In major OECD countries, direct and indirect emissions of GHG from industry account for up to one-third of total end-use greenhouse gas (GHG) emissions. Policymakers at a variety of government levels are considering policies to address these emissions. Benchmarking, which assesses GHG emissions performance across facilities or against a common standard, can be used in various policy approaches, including:

·      Regulation of GHG emissions through a cap-and-trade program, along with free allocation of emissions allowances to industry sectors in proportion to output based on an emissions performance benchmark;

·      Regulatory GHG performance standards, where individual facilities are required to meet an emissions performance standard;

·      Energy efficiency targets, either regulatory or voluntary; and

·      Voluntary performance goals, in which participating companies commit to achieving a particular emissions benchmark by a particular year.

Against this background, the North American greenhouse gas (GHG) regulatory landscape has recently been evolving at both federal and sub-national levels, putting GHG emissions benchmarks up on the agenda of U.S. states and Canadian provinces committed to reducing their emissions. Beyond North America, other jurisdictions are also developing benchmarks as a means to reduce GHG emissions, particularly in the European Union as part of the revision of its emissions trading system (ETS) in preparation of Phase III.

Workshop Objectives

·      Explore approaches to developing industrial greenhouse gas emissions benchmarks that could inform either allowances allocation under a GHG cap and trade program or performance-based GHG (i.e. performance standards) regulations;

·      Gain understanding of current approaches to industry benchmarking, including those being implemented in the EU, California and elsewhere;

·      Examine international best practices to identify appropriate sectors with which to begin benchmarking and how to design benchmarks;

·      Identify benefits of coordinating benchmarking approaches, inter alia with regard to competitiveness and leakage issues;

·      Generally foster broader communication and collaboration on climate policy by the example of benchmarking; and

·      Identify possible next steps for continued collaboration between NA2050 and ICAP.


1 day public workshop in New York City with presentations and participation from ICAP and NA2050 representatives and from selected experts from various backgrounds (academia, non-profit, industry). Presentations will be followed by open discussions amongst the participants. About 60 attendees are expected.


·      Representatives from ICAP members and observers engaged in and/or interested in developing benchmarks for allocation in an emissions trading system;

·      Government officials from U.S. States and Canadian provinces, e.g. from RGGI, WCI and NA2050 jurisdictions, as well as from the U.S. and Canadian federal governments;

·      Industry representatives e.g. from the refinery, steel, cement, pulp and paper sectors;

·      Representatives from the non-governmental sector and from academia.

Co-hosts:  International Carbon Action Partnership (ICAP) and the North America 2050 Initiative (NA2050)

For further information, please visit www.icapcarbonaction.com or na2050.org, or contact us at events@icapcarbonaction.com.


Workshop Presentations

(Presentations linked where available)


Welcome and introductions

Objective: Welcome speakers and participants. Outline objectives for the workshop. Provide overview of the agenda.

·           Jared Snyder, N.Y.S. Department of Environmental Conservation and ICAP Co-Chair

·           Stuart Clark and Craig Golding, NA2050 Industry Working Group Co-Chairs

Session 1: The Context/Rationale for Benchmarking

Chair: Hans Bergman, European Commission

Objective: Provide a theoretical introduction by defining the concept, key elements and rationale of benchmarking in current regulatory contexts in North America, Europe and elsewhere.

·           Franz Litz, Pace Energy and Climate Center

·           Hubert Fallmann, Austrian Federal Environment Agency

Session 2: Existing and Innovative Approaches to Benchmarking Policy around the World

Chair: Dirk Weinreich, German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Objective: Provide an overview of current approaches to benchmarking around the world with a focus on policymaking, while exploring similarities and differences while exploring similarities and differences among existing programs. Present the general approach to elaborating benchmarks. Discuss reasoning behind decision to utilize benchmarking and compare to alternatives. This session will also touch on potential uses of benchmarking not yet put in practice.

·           Maarten Neelis, Ecofys

·           Elizabeth Dutrow, U.S. Environmental Protection Agency

·           Ian Bingham, Arizona Department of Environmental Quality

·           Mark Wenzel, Climate Change Unit, California Environmental Protection Agency (via webcast)

Session 3: Constructing Benchmarks

Chair: Pete Erickson, Stockholm Environment Institute

Objective: Focus on the technical aspects of benchmark construction and implementation in selected industry sectors. Highlight similarities and differences among existing programs and industry sectors and why these differences exist.

·      Erika Guerra, Holcim

·      Nate Aden, World Resources Institute

·      Alan Reid, CONCAWE

Session 4: Implementation Challenges and Lessons Learned

Chair: Justin Johnson, Vermont Department of Environmental Conservation

Objective: Reflect on the challenges encountered in the implementation of benchmarks and on lessons learned, both from a regulator’s and industry’s perspective. Discuss the benefits arising from benchmarking programs, and how industries have changed their practices.

·      Jasmin Ansar, Union of Concerned Scientists

  • Perspective of non-governmental organizations on the benefits of benchmarking in decarbonizing the industry and energy sectors.

·      Christophe Ewald, French Ministry of Ecology, Sustainable Development and Energy

·      Denise Viola, Shell

  • Experience with and lessons learned from using benchmarks in the refinery sector.

·      Michelle Ward, New Zealand’s Environmental Protection Agency (via webcast)

  • NZ Experience with benchmarking for industrial allocation under the NZ ETS

·      Alexander Caroly and Jeewantha Karunarathna, Australian Department for Climate Change and Energy Efficiency (via webcast)

Session 5: Conclusions and Outlook

Chair: Judi Greenwald, Center for Climate and Energy Solutions

Objective: Lessons learned from international experiences on benchmarking application in various policy contexts, sectors and countries. Review how challenges were overcome and if those solutions are applicable in all jurisdictions.

Exchange views and discuss possible features that allow for comparable benchmarks at international scale, and appropriate sectors with which to begin benchmarking. Discuss the replicability / transferability potential of examples presented during the workshop to other policy areas, approaches and sectors.

Open discussion facilitated by session chair



What can Hurricane Isaac teach us about climate vulnerability?

As with any single event, Hurricane Isaac doesn’t tell us anything about whether hurricanes are getting worse due to climate change. But Isaac’s impacts should be examined to teach us about our vulnerabilities to the types of extreme events scientists tell us climate change will make more common.

Business and government start preparing for climate impacts

Today’s Senate hearing isn’t just about the science of climate change. It’s also about the actions that need to be taken now to adapt to the reality of a changing climate. Businesses and governments each have a critical role to play in building resilient communities and economies.

Business-as-usual is already being interrupted by extreme heat, historic drought, record-setting wildfires, and flooding. Events from water shortages to floods are disrupting the supply chains for such companies as Honda, Toyota, Kraft, Nestle and MillerCoors. By the end of 2011, the United States had recorded more billion-dollar disasters than it did during all of the 1980s, totaling about $55 billion in losses.

Report Highlights Climate Change Risks to Key Gulf Coast Industries

Press Release
June 6, 2012

Contact: Rebecca Matulka, 703-516-4146, matulkar@c2es.org


Report Highlights Climate Change Risks to Key Gulf Coast Industries
Recommends Steps to Reduce Impacts on Region’s Energy and Fishing Sectors 

Climate change is already having major impacts on the Gulf Coast region and action is needed to protect its vital industries from the likely impacts of continued warming, according to a new report from the Center for Climate and Energy Solutions (C2ES).

The report, Impacts and Adaptation Options in the Gulf Coast, examines the risks that climate change poses to the region’s energy and fishing industries, and to its residents and local governments. It concludes that climate impacts are already being felt across these sectors, and outlines measures that can be taken to adapt to the growing risks, reducing the region’s vulnerability and the costs associated with future impacts.

The convergence of several geographical characteristics—an unusually flat terrain both offshore and inland, ongoing land subsidence, dwindling wetlands, and fewer barrier islands than along other coasts—make the Gulf Coast region especially vulnerable to climate change. Among the impacts and risks cited in the report:

  • Over the past century, both air and water temperatures have been on the rise across the region;
  • Rising ocean temperatures heighten hurricane intensity, and recent years have seen a number of large, damaging hurricanes;
  • In some Gulf Coast locations, local sea level is increasing at over ten times the global rate, increasing the risk of severe flooding; and
  • Saltwater intrusion from rising sea levels damages wetlands, an important line of coastal defense against storm surge and spawning grounds for commercially valuable fish and shellfish.

“Nowhere else in the U.S. do we see the same convergence of critical energy infrastructure and high vulnerability to climate change,” said C2ES President Eileen Claussen. “These risks are not borne by the Gulf Coast alone. A major energy supply disruption, for instance, would be felt nationwide. We must respond on two fronts: We have to work harder to reduce the greenhouse gas emissions causing climate change. And we must take steps, in the Gulf Coast and elsewhere, to prepare for the impacts that can’t be avoided.”

The report’s lead author is Hal Needham, a researcher at Louisiana State University’s Southern Climate Impacts Planning Program (SCIPP) and an expert on hurricane storm surges in the Gulf Coast. The co-authors are David Brown, an assistant professor in LSU’s Department of Geography and Anthropology, and Lynne Carter, associate director of SCIPP.

In their analysis of the Gulf Coast’s energy industry, which comprises about 90 percent of the region’s industrial assets, the authors found significant risks from hurricanes, sea level rise, rising temperatures and drought. The report noted the considerable damage the energy industry sustained from recent hurricanes in 2004, 2005 and 2008.  Thirty percent of the nation’s refineries are located in Texas and Louisiana, and Louisiana Offshore Oil Port in Port Fourchon is the country’s only deep-water oil import facility. At its current elevation, Louisiana Highway 1, the only access to the port, is projected to be flooded 300 days a year by 2050.

For the region’s other major industry, fishing, the report details major infrastructure risks, especially relating to coastal docking and fish processing. Fish and shellfish populations are also vulnerable to climate impacts, with a combination of warmer water, ocean acidification, and excessive runoff from the Mississippi River combining to increase the risk of large-scale changes in the Gulf ecosystem.

The authors emphasize that advance planning can reduce the region’s vulnerability and the costs incurred from future climate impacts.

For the energy sector, adaptation strategies include learning from recent hurricanes to more rigorously assess vulnerabilities; strengthening design standards for drilling platforms and other infrastructure; and undertaking projects such as the planned raising of sections of Highway 1 to Port Fourchon. To reduce vulnerability in the fishing industry, options include strengthening docking facilities and other infrastructure subject to storm surges, and limiting fertilizer use upstream on the Mississippi River to reduce the incidence of hypoxia (oxygen-starved waters) in the Gulf.

“Climate change is already taking a toll on the Gulf Coast, but if we act now to become more resilient, we can reduce the risks, save billions in future costs, and preserve a way of life,” said Needham. “The Gulf Coast is one of the first regions to feel the impacts of climate change. It only makes sense to be a first mover on climate adaptation as well.”


About C2ES
The Center for Climate and Energy Solutions (C2ES) is an independent non-profit, non-partisan organization promoting strong policy and action to address the twin challenges of energy and climate change. Launched in November 2011, C2ES is the successor to the Pew Center on Global Climate Change, long recognized in the United States and abroad as an influential and pragmatic voice on climate issues. C2ES is led by Eileen Claussen, who previously led the Pew Center and is the former U.S. Assistant Secretary of State for Oceans and International Environmental and Scientific Affairs.


Impacts and Adaptation Options in the Gulf Coast

Impacts and Adaptation Options in the Gulf Coast

June 2012

by Hal Needman, David Brown, and Lynne Carter

Download the full report (PDF)

Press Release

Press briefing (mp3)



The central and western U.S. Gulf Coast is increasingly vulnerable to a range of potential hazards associated with climate change. Hurricanes are high-profile hazards that threaten this region with strong winds, heavy rain, storm surge and high waves. Sea-level rise is a longer-term hazard that threatens to exacerbate storm surges, and increases the rate of coastal erosion and wetland loss. Loss of wetlands threatens to damage the fragile coastal ecosystem and accelerates the rate of coastal erosion.

These hazards threaten to inflict economic and ecological losses in this region, as well as loss of life during destructive hurricanes. In addition, they impact vital economic sectors, such as the energy and fishing industries, which are foundational to the local and regional economy. Impacts to these sectors are also realized on a national scale; Gulf oil and gas is used throughout the country to heat homes, power cars, and generate a variety of products, such as rubber and plastics, while seafood from the region is shipped to restaurants across the country.

This report reviews observed and projected changes for each of these hazards, as well as potential impacts and adaptation options. Information about the scale and relative importance of the energy and fishing industries is also provided, as well as insight into potential vulnerabilities of these industries to climate change. This report also identifies some adaptation options for those industries.


Senate Hearing on Bingaman Clean Energy Standard

My C2ES colleague, Judi Greenwald, will be testifying on Thursday at a hearing of the Senate Energy and Natural Resources Committee on the Clean Energy Standard Act of 2012, a bill written by Sen. Jeff Bingaman (D-NM), the committee chairman. As mentioned in my previous blogs (The Bingaman Clean Energy Standard: Let the Conversation Begin and The Bingaman Clean Energy Standard: What is "Clean"?) and in our primer on the design of a clean energy standard (CES), we think a CES holds a lot of potential for maintaining a diverse energy mix, advancing clean energy technology and associated industries, and reducing the environmental footprint of the electric power sector—including the sector's greenhouse gas emissions, which account for about one third of the U.S. total.

As Judi will attest, we also think Sen. Bingaman's bill is a great start, and balances the multiple objectives we would have for such a measure.  On Thursday, we get to hear what a few other people think. 

Watch this space Thursday morning as I live blog from the hearing and post updates below.

Update May 17, 11:58 am: It’s a standing-room-only crowd at this morning’s hearing before the Senate Energy and Natural Resources Committee on Senator Jeff Bingaman’s proposal for a federal clean energy standard.

Senators in attendance: Committee chairman Sen. Bingaman (D-NM), top committee Republican Sen. Murkowski (R-AK), Barrasso (R-WY), Cantwell (D-WA), Coons (D-DE), Corker (R-TN), Franken (D-MN), Manchin (D-WV), Risch (R-ID), Shaheen (D-NH), Udall (D-CO), Wyden (D-OR)

Here are some highlights of the question-and-answer session during the hearing’s first panel, with witnesses David Sandalow, Assistant Secretary for Policy and International Affairs at the U.S. Department of Energy, and Dr. Howard Gruenspecht, Acting Administrator of the Energy Information Administration:

Sen. Bingaman pointed out that EIA projects that electricity rates would increase by 2035 under the CES, but then asked how would electricity bills will be affected.  Mr. Sandalow answered that the modeling shows that the average household energy bill would actually decline by $5 a month by 2035, in large part because of the energy efficiency promoted by the bill. Dr. Gruenspecht agreed.

Sen. Murkowski asked whether the cost of renewable energy being used by federal agencies under the Energy Policy Act of 2007 is an indication of the costs that would be seen under Sen. Bingaman’s bill. Mr. Sandalow pointed out that a key difference between Sen. Bingaman’s bill and the 2007 law is that the CES would give credit not only for renewable energy, but for nuclear power, natural gas, and clean coal, which would lead to lower prices than renewable energy alone.

Sen. Barrasso asked whether the Obama administration would rescind greenhouse gas regulations promulgated under the Clean Air Act if Sen. Bingaman’s bill were enacted.  Mr. Sandalow said the administration would not support such an amendment to the Clean Air Act.  For the record, C2ES believes that if a CES, or any other measure, led to significant reductions in GHG emissions from a given economic sector, we should be open to using that measure rather than the existing provisions of the Clean Air Act that pertain to that sector.

Sen. Franken suggested that it might be worth setting aside a fraction of the bill’s requirement for clean energy specifically for renewable energy.  In fact, while most states have renewable energy standards in place, four—Michigan, Ohio, Pennsylvania, and West Virginia—have alternative energy standards, similar to Sen. Bingaman’s clean energy standard proposal, and each of the four takes an approach that favors renewable energy sources over the other qualifying clean energy sources.

Update May 17, 1:55 pm: Here are some quick notes on the second panel of this morning’s hearing. The room is still full even though many of the Senators and journalists have left—thus missing a discussion on preemption that was arguably the most noteworthy exchange of the entire hearing.

After the opening statements, Senators Bingaman and Murkowski had an extended back-and-forth with the panelists about the overlap between the Bingaman bill and other regulatory programs. The panelists offered a range of views, with a couple supporting preemption of the Clean Air Act authority. C2ES’s Judi Greenwald expressed a more nuanced view:

The key issue is environmental results. If a CES is ambitious enough, and can achieve greater environmental benefits than we can get under existing Clean Air Act Authority, it might make sense to consider replacing some Clean Air Act provisions with a CES. However, we need to be very cautious. The Clean Air Act has very broad authority to address GHG emissions throughout the economy and the CES only applies to power plants. We would need to ensure that EPA maintains its authority to continue to make progress in other sectors, for example, as with the successful greenhouse gas standards for vehicles.

Perhaps the biggest obstacle to exploring this issue is the deep partisan divide over EPA and the Clean Air Act. With members of Congress calling for an evisceration of EPA and the Clean Air Act, there is a legitimate concern that opening up the Act for an ostensibly narrow revision would lead to a gutting of provisions having nothing to do with greenhouse gases.

On another topic, Sen. Franken discussed Minnesota’s energy efficiency resource standard, and asked whether incentives for energy efficiency could be incorporated into the Bingaman bill. Judi Greenwald pointed out that many of the bill’s features would indeed promote energy efficiency: crediting of combined heat and power, the use of revenues raised through the alternative compliance payment, and the very structure of the proposed standard—it would be set as a percentage of total electricity production; if electricity use goes down, the requirement is easier to meet. 

One thing we wish we could've said:

During the first panel, Sen. Corker said carbon capture and storage (CCS) will be broadly deployed when donkeys fly. Sen. Manchin, who takes a decidedly more favorable view towards CCS, was nevertheless concerned that the bill does not promote CCS.

Here's what we would have said, had they raised those points during the second panel:

While EIA projects that CCS is not deployed under the bill, it could be. CCS could play a bigger role under this bill if we can bring down its costs. There are a number of options for doing that. For example, C2ES co-convenes the National Enhanced Oil Recovery Initiative, which is calling for a federal tax credit to capture and transport CO2 from power plants and industrial sources for use in enhanced oil recovery. In addition to driving a lot of domestic oil production, and reducing CO2 emissions, it would generate additional revenue to cover the cost of CCS.  We would expect that as CCS costs come down, it would enable coal to have a bigger role. A CES could help in other ways as well. AEP put the Mountaineer project on hold and withdrew from its partnership with DOE on this project because regulators in several states could not justify the expense for a technology that is not required by law. The CES could make the case for projects like Mountaineer to go forward.

Speech: Utilizing CCS to Reduce Emissions

Keynote speech by Eileen Claussen, President of the Center for Climate and Energy Solutions
11th Annual Conference on Carbon Capture, Utilization and Sequestration
Pittsburgh, Pennsylvania
May 1, 2012

Thank you very much. It is a pleasure to be here in Pittsburgh. And I want to thank Exchange Monitor Publications and Forums, together with the Department of Energy and the National Energy Technology Laboratory and their partnering organizations, for convening this very timely and very important conference.  

Everything is so well organized and the breakfast spread was so perfect and so tantalizing … for a moment I thought I was at an event put together by the General Services Administration.  

I also congratulate you for putting added emphasis this year on the utilization of carbon emissions and for changing the title of the conference to reflect this … Now it can officially be said that this is the event that put the “you” in CCS. If only we could add an “A” word to the end and make it CCUSA, then we could add some patriotic flair to this whole endeavor. 

In all seriousness, I want to talk with you today about why CCS (or any acronym we choose to employ for it) is so important … not just for the future of fossil fuels—but also for the future of this country and its efforts to get a handle on the twin challenges of energy and climate change. 

And I also want to discuss one of the most promising technologies available for making large-scale CCS a reality. I am talking, of course, about CO2-enhanced oil recovery, or CO2-EOR, which is an issue that my organization has been working intently on as a co-convener of the National Enhanced Oil Recovery Initiative.

Whether you spend the bulk of your waking hours worrying about the potential dangers of climate change or not, CO2-EOR makes a huge amount of sense for a number of reasons that I intend to go over later in my remarks. But first I want to talk about why we are even having this conversation and why the United States and the world must finally get serious about taking full advantage of big opportunities CO2-EOR.

When it comes to energy and climate, the United States stands at a crossroads today. Indeed, we are standing there with the rest of the world. At this crossroads, we have a choice to make. We can continue with a business-as-usual or status quo approach to energy and climate issues. If that’s what we choose, we’ll continue to face the same questions and the same concerns not just about the environment and climate change but about energy-related risks to our national security, our economy and jobs, and more.

Or we can choose a new road to the future--that protects our economy, our security and our climate for decades to come. 

The environmental case for doing this is compelling enough. According to most scenarios, global emissions of greenhouse gases need to peak by 2015 in order to have a reasonable chance of limiting global warming to no more than 2 degrees Celsius. This is the level where many scientists say we can manage the risks of climate change, but there is considerable debate even on this point and some think we will already be flirting with disaster at 2 degrees Celsius.  

Whatever the case, 2015 is just three years away. Are emissions showing any signs of peaking? Not even close … After a brief downturn due to the recession, newly released figures from the EPA show that U.S. emissions resumed their upward march in 2010, rising by 3.2 percent compared to 2009. And global emissions are projected to grow 17 percent by 2020, and 37 percent by 2035. Under that scenario, we could see average global temperatures rise 3 to 4 degrees Celsius by 2100.

But, even if you are an ardent skeptic of the science of climate change or of our ability to dramatically reduce our greenhouse gas emissions, the energy case should be motivation enough for abandoning the status quo and following a new and different road to the future.   

What do we care about? Reliability. Affordability. Security. Reduced environmental impact. These have to be the hallmarks of U.S. energy policy going forward, and carbon capture and storage can and must be an important component of that policy. It provides us with the means to continue using fossil fuels in a carbon–constrained future. It is especially critical for producing electricity from both coal and natural gas, while simultaneously reducing greenhouse gas emissions.    

Coal, of course, has the most at stake in this discussion. Coal, in fact, is at a crossroads itself. The latest figures from the U.S. Energy Information Administration confirm that coal’s share of U.S. electricity generation is decreasing. 

In 2006, coal-fired generation accounted for more than half (50.4 percent to be exact) of the total generation mix in this country. By the end of 2011, that figure had declined to 43.4 percent of the mix, a drop of 7 percentage points. The biggest factor in coal’s relative decline, of course, is dropping natural gas prices. According to EIA, natural gas prices are forecast to remain below $5 per million BTUs for the next 10 years. This is why we’re seeing so many new natural gas power plants. EIA’s latest estimates for 2011 and 2012 show around 20 gigawatts of added capacity planned for natural gas versus around 9 gigawatts for coal. Add to this the spare capacity of existing gas-fired power plants that were built to generate electricity during the daytime hours only and you can see the challenges facing coal.   

New EPA rules also pose challenges for coal. The new Mercury Rule alone, which was issued last December, will affect 1,325 units at 525 power plants of all types around the United States. Some of these plants are more than 50 years old, and companies may retire older plants rather than paying to install new pollution control equipment.

In addition, there is EPA’s Cross-State Air Pollution Rule (CSAPR) and, on the industrial side, the 2011 rule imposing new emissions reductions requirements on coal-fired boilers. And most notably, of course, earlier this spring the EPA proposed the first-ever national standards for limiting greenhouse gas emissions from new power plants. In order to comply with the rules, new plants would have to install carbon capture and storage technologies. There is essentially no other way for these plants to reduce their emissions to the level required under this proposal. 

After detailing all of these challenges for coal, I am inclined to ask the question, “Other than that, Mrs. Lincoln, how did you enjoy the play?”

The proposed GHG rules make it official: In order to keep coal’s share of the U.S. energy mix from declining further, we need to throw out old ways of thinking. We need to think big. This is not just about trying to compete with natural gas on price; it is about embracing new ideas and new technologies to ensure that coal can continue as a fuel of choice in a world that, whether you like it or not, will become increasingly focused on limiting and reducing carbon emissions.

Coal alone is responsible for 28 percent of U.S. greenhouse gas emissions. Worldwide, 43 percent of CO2 emissions from fuel combustion come from coal. Clearly, something has to give. In order for the world to get a handle on the climate problem, and in order for coal to hold onto its place as a major energy source in the decades to come, we need to show – and very quickly – that it is possible to achieve substantial cuts in emissions from coal-fired power generation.

In other words, we need to find a low-carbon solution for coal. And coal is not our only challenge – we need all the low-carbon and carbon-free technologies we can get. The good news about natural gas is that it generates half of the emissions of coal when used as a fuel source. But that’s also the not-so-good news about natural gas; it still generates substantial emissions, and in order to achieve the level of reductions that will reduce the risk of climate change, we need CCS for natural gas as well as for coal.   

The potential for CCS to reduce emissions is undeniable. Studies show that CCS technology could reduce CO2 emissions from a coal-fueled power plant by as much as 90 percent.  Modeling done by the International Energy Agency (IEA) forecasts that CCS could provide 19 percent of total global GHG emission reductions by 2050. That includes reductions from coal and natural gas-fired power plants, as well as all other sources.

But these are just studies, they are merely estimates of what could happen if CCS finally emerges from the world of drawing boards and demonstration projects to actual widespread deployment throughout this country and around the world.  What we are doing right now to develop these technologies is not enough; it’s not even close to enough.  We have two decades at most to deploy these technologies at the scale needed to achieve substantial reductions in emissions.  

And one way to start is by taking a more serious approach to the development of CO2-Enhanced Oil Recovery in this country.  

For nearly 15 years, my organization has sought to bring industry, government, NGOs and others together to explore innovative solutions to the climate and energy challenges we face in the United States and around the world. We see CO2-EOR as a very important piece of the puzzle. And this is why we worked with the Great Plains Institute to convene the National Enhanced Oil Recovery Initiative, or NEORI. NEORI is a coalition of industry, state, environmental and labor leaders who have come together to develop and present recommendations for boosting domestic oil production and reducing CO2 emissions through the expanded use of CO2-EOR.

The participants in this effort believe that EOR using captured carbon dioxide offers a safe and commercially proven method of expanding domestic oil production that can help the U.S. simultaneously address three urgent national priorities. 

  • The first priority is increasing our nation’s energy security by reducing dependence on foreign oil, including oil that is imported from unstable and hostile nations. CO2-EOR potential in the United States equals 26 to 61 billion barrels of oil with existing technology; with next-generation techniques the potential rises to 67 to around 140 billion barrels. U.S. proven reserves are 20 billion barrels, so we are talking about at least doubling U.S. oil potential. That’s huge. 
  • The second priority that CO2-EOR addresses is creating economic opportunity – if we do this right, it will create jobs, boost tax revenues, and reduce the U.S. trade deficit. We can put dollars we now spend on oil imports to work right here in the U.S. economy. How much money are we talking about? One estimate, from Advanced Resources International, projects that the reduction in oil imports associated with CO2-EOR would total $600 billion by 2030. 
  • And the third priority addressed by CO2-EOR? Protecting the environment. Capturing and storing CO2 from industrial facilities and power plants will reduce U.S. greenhouse gas emissions, while getting more American crude from areas already developed for oil and gas production. By fully developing American reserves that are amenable to this practice, we could reduce CO2 emissions by 10 billion to 19 billion tons, an amount equal to 10 to 20 years of emissions from personal vehicle use in this country. And the bonus is that it can help us further the commercial deployment of the CCS industry in this country — not just with coal and natural gas power plants, but with other domestic industries such as natural gas processing, ethanol and ammonia production, and steel and cement manufacturing. Driving innovation in CCS technology will allow us both to take advantage of our nation’s vast fossil fuel resources and achieve much larger CO2 emission reductions.

I have worked on the climate issue for many years now, and I assure you this is a big deal. Reducing U.S. CO2 emissions by up to 19 billion tons while also advancing CCS technology would be a major achievement.

So if CO2-EOR is so important, why aren’t we doing more of it? Well, as all of you know, the major hurdle standing in our way is that there’s just not enough readily available CO2. And this is why our organization joined with the Great Plains Institute to convene the NEORI. 

The idea behind this initiative was to bring together a diverse group of stakeholders and try to come to agreement about what needs to happen to realize CO2-EOR’s potential. More specifically, we wanted to develop a set of recommendations for federal and state incentives that will stimulate the expansion of CO2-EOR using carbon dioxide from power plants and industrial facilities. 

Were these conversations easy? In a word, no. This is a group that included participants ranging from major coal companies and industrial suppliers of CO2 to environmental NGOs, organized labor, and state officials. The diversity of the group meant we had some very tough discussions. But in the spirit of the saying, “Nothing that is worthwhile is easy,” the final participants in this project stuck with it, and they came up with a plan that already has attracted bipartisan interest in Congress. We released this plan earlier this year at an event on Capitol Hill, and I want to give you a quick sense of what it entails.

NEORI’s centerpiece recommendation is a competitively awarded, revenue-positive federal production tax credit for capturing and transporting CO2 to stimulate CO2-EOR expansion. This federal tax credit would more than pay for itself because it will lead to additional oil production subject to existing tax treatment. The new incentive will enable a variety of industry sectors to market new sources of CO2 to the oil industry, and to reduce their carbon footprints. It will drive innovation and cost reduction in CO2 capture and compression, and help build out a national CO2 pipeline system.  

For the near term and until the broader credit is in place, NEORI also recommends specific “good government” changes to improve the workability of the existing carbon capture and storage credit known as Section 45Q

Of course, states also have an important role to play in fostering CO2-EOR deployment. This is why NEORI identifies existing state policies that should serve as models for policymakers in other states to adopt and tailor to their particular needs. 

Later this morning, you will hear more about our recommendations from a panel of NEORI participants. And I encourage you to visit the website, www.neori.org, for more on the recommendations we have made. 

So let’s cut to the chase. What will happen if we adopt these measures I have described? NEORI estimates that our proposed new federal production tax credit for CO2 capture will quadruple the amount of domestic oil currently produced annually through enhanced oil recovery – to 400 million barrels a year in the outyears – while cutting CO2 emissions by 4 billion tons over the next 40 years. In addition, we will be generating new tax revenue for states and for the federal government – as I said, these incentives will more than pay for themselves. And we will be gaining vital experience and creating valuable infrastructure supporting broader deployment of carbon capture and sequestration in the future. 

At a time of economic struggle, fiscal crisis and political gridlock, at C2ES we believe the NEORI proposal is an encouraging example of how we can and must make progress on the climate and energy challenges we face. As much as we would like to see comprehensive solutions to our climate and energy challenges, those solutions are not on the immediate horizon. But if we come at these issues one by one, look for opportunities where interests converge, and are open to compromise, we can arrive at practical solutions benefiting our economy, our security and the environment.

At the Capitol Hill event where NEORI announced our recommendations in February, we also were able to welcome a bipartisan group of members of Congress who were on hand to express their support. Given the political gridlock in Washington in this election year, it was reassuring to see lawmakers from both political parties step up and say they agree that this is important work. 

Will we see comprehensive legislation on this issue pass the Congress this year? That’s unlikely … but we do think we have a shot at Section 45Q reform this year. Still, the NEORI recommendations have started the conversation and we feel optimistic that we can see progress on this issue in the not-too-distant future no matter who controls the Presidency and the Congress next year. 

All of which brings me to the closing segment of my remarks today, in which I simply want to appeal to all of you to help us keep pushing these issues forward. 

Rarely in the current political climate do Republican and Democratic lawmakers in Washington rally together in support of anything. So we need to make the most of this opportunity. Everyone who supports CO2-EOR has an obligation to educate their representatives in Washington and in state capitals around the country about the benefits this can deliver for our economy, our national security and the environment. 

We also need to help the general public understand what’s at stake here … why we need to reduce emissions, why CO2 use and sequestration in depleted oil fields is an important solution, and what this can mean for the future of our country, and for the future of fossil fuels as well.

Thank you very much.

Syndicate content