Science

GHG Intensity

Greenhouse gas (GHG) intensity is a measure of the amount of emissions relative to GDP. it is highest in Russia and China with the United States below the world average.


Sources: International Energy Agency, Key World Energy Statistics (2009)
                 International Energy Agency, CO2 Highlights (2011)
                 U.S. Environmental Protection Agency, International Non CO2 Projections (2012) 
 

Per Capita GHG Emissions

Per capita greenhouse gas (GHG) emissions are highest in the United States and Russia, followed by Japan and the EU-27.


Sources: World Bank, Population Data (2012)
                  International Energy Agency, CO2 Highlights (2011)
                  U.S. Environmental Protection Agency, International Non CO2 Projections (2012) 
 

Summer Minimum Temperature

This figure shows extremes in summer minimum temperatures for the U.S. since 1910. In general, nighttime temperatures are warming faster due to global warming than daytime temperatures. In recent years, warm extremes have vastly outnumbered cold extremes.

Source: NOAA/NCDC U.S. Climate Extremes Index
 

Wildfires

This figure shows the size of U.S. wildfires over a 25 year period from 1983 to 2008. Wildfire season is now longer on average and increases in wildfire frequency have been greatest in mid-elevation, Northern Rockies forests where land use histories have little effect on fire risks. (Westerling, 2006)

Source: USGCRP/National Interagency Fire Center

Extreme Precipitation

Increased moisture in the atmosphere as a result of warming temperatures increases the risk of extreme precipitation events. In the United States, the frequency of heavy downpours has increased by almost 20 percent on average. The following figure shows changes in the number of days with heavy precipitation since 1958 on a regional basis.

Source: US GCRP, Groisman et al, (2009)

Extreme Temperature

Increasing temperatures cause a corresponding increase in extreme high temperatures and heat waves. Over the past decade, record high temperatures now occur about twice as often as record lows. In the 1950s this ratio was about one-to-one.

Drought

The top figure shows dryness trend as measured by the Palmer Drought Severity Index from 1900 to 2002 for different regions of the world. For most areas, drier (red and yellow) conditions are now significantly more common than wetter (blue and green) conditions. The bottom figure shows the trend over time of increasing drought, indicating that for much of the world, droughts are more common.

Source: IPCC AR4, Adapted from Dai et al, (2004)

Global Warming Contributing to Texas Drought

This blog is co-written by Jay Gulledge

Recently, President Obama quipped about GOP presidential candidate and Texas governor Rick Perry: “You’ve got a governor whose state is on fire denying climate change.” While this type of election jousting risks further politicizing an issue that should be totally non-partisan, it raises a legitimate question: Is climate change increasing the risk of drought and wildfires in Texas?

Flood Damages Stacking Up in Northeast

With the Northeast still reeling from the impacts of Hurricane Irene, the possibility of even more flooding was almost too much to comprehend. But last week the remnants of Tropical Storm Lee stalled and sent plumes of precipitation toward the Northeast, creating a replay of the floods a few weeks earlier. This time the area along the Susquehanna River in Pennsylvania and New York was in the bulls-eye. Since the ground was still saturated from Irene, this new round of flooding was worse, surpassing the previous record event set in 1972 when Hurricane Agnes dropped a torrential downpour on the area.

Q&A with Eileen Claussen for Singapore International Energy Week

This Q&A orginally appeared on Singapore International Energy Week's website.

September 2011

Q1. The Kyoto Protocol expires in 2012. Do you see an agreement on its successor during negotiations at Durban later this year? Or is an extension of the Kyoto Protocol or a move to a transitional framework a more likely outcome?

Eileen Claussen: The Kyoto Protocol has played an important role in advancing climate change efforts in some parts of the world. Most notably, the European Union established its successful Emissions Trading System and other policies in order to fulfil its obligations under the Kyoto Protocol. However, because developing countries are exempt from Kyoto's emission targets and because the United States has chosen not to join, the Protocol covers just one-third of global greenhouse gas emissions. Japan, Canada and Russia have made clear that they will not take on new binding targets post-2012 without commensurate obligations by the United States and the major developing countries, which are not prepared for binding commitments. Hence, there appears very little prospect of new Kyoto commitments being adopted in Durban.

While our ultimate aim should be a comprehensive and binding international climate framework, we must accept that getting to binding commitments will take time. The Cancún Agreements made important progress in strengthening the existing frameworks in the areas of finance, transparency, adaptation and technology. Further incremental progress in these areas will promote near-term action and will strengthen parties' confidence in one another and in the regime, thereby building a stronger foundation for a later binding agreement. At the same time, countries must continue strengthening political will and policies domestically. In Durban, parties should make concrete progress in implementing the Cancún Agreements--for instance, by establishing the Green Climate Fund and agreeing on stronger transparency measures--while affirming their intent to work toward binding outcomes.

Q2. Global GHG emissions increased by a record amount last year. Is the goal of preventing a temperature rise of more than 2 degree Celsius just a "nice Utopia" as IEA's Dr Fatih Birol put it?

EC: Long-term goals are tricky. On the one hand, they provide a rallying point to help focus attention and orient action, and a yardstick for measuring progress. On the other hand, they are meaningful only if they can be operationalized, and if interim efforts don't appear to be on track, people may be discouraged as a result and the will to act may actually weaken. In the case of climate, a temperature goal is appealing because it is easily related in the public mind to the core issue--global warming. But as a metric, it is several steps removed from the action that is needed: Reducing emissions. From a practical standpoint, a global emissions goal might be more helpful.

Countries' pledges to date clearly do not put us on the path to meeting the 2 degree goal. While achieving the goal is not yet out of the question, it would require a dramatic acceleration of efforts around the globe. The bottom line is that we know what direction we must go. Whatever our long-term goal--indeed, whether or not we have a long-term goal--the immediate challenge is the same: Ramping up our efforts as quickly as possible.

Q3. How much of an impact will the recent nuclear power crisis in Japan have on GHG emissions reduction?

EC: It is still too early to know what impact the Fukushima disaster will have on energy choices and greenhouse gas emissions around the world. The most dramatic example is the recent decision by Germany to completely phase out nuclear power. While many in Germany believe that the gap can be filled by renewable energy and improved energy efficiency, others are deeply concerned that the country will deepen its reliance on coal, making it impossible to achieve its ambitious greenhouse gas reduction goals.

Other countries must assess for themselves the implications of Fukushima for their energy futures. For those countries choosing to continue or deepen their reliance on nuclear power, the tragedy clearly offers lessons for improving safety. Given the continued growth in energy demand projected in the future, particularly in developing countries, it is difficult to imagine that we will be able to meet the world's energies needs and simultaneously meet the climate challenge without continued reliance on nuclear power. It is therefore imperative that we continue striving to enhance safety and solve the issue of long-term waste disposal.

Q4. Technology is seen as a key enabler to achieve low emissions growth. In your opinion, what are the top three technologies available today that can make the biggest impact?

EC: There are thousands of technologies available today that could make a huge impact with the right policy support, such as a price on carbon. But the problem, at least in the US today, is that it is unclear when such policy support will be forthcoming. So I will pick my top three based on the ones that need the least additional policy support to make a contribution, either because they yield multiple economic benefits beyond climate, or because they benefit from existing policy drivers. 

a. Batteries in cars. Batteries can be used in vehicles in a variety of ways. While a battery-only vehicle may only be able to fill a niche market, hybrid vehicles that run on either gasoline or electricity will likely have broader appeal, and start-stop batteries, which turn off the gasoline engine while a vehicle idles, can be applied to just about any vehicle, achieving modest per-vehicle reductions that add up to significant reductions fleet wide. The combination of new US standards for fuel economy and GHG emissions and electric utility interest in selling electricity can drive battery costs down. The potential emission reductions are enormous, but they depend on cleaning up the electricity grid.

b. Information technology. IT can enable dramatic GHG reductions, for example through energy efficiency (e.g. smart buildings that turn on lights and HVAC when they're needed and turn them off when they're not), substituting videoconferencing for travel, and using wireless communication to optimize transportation routing for people and goods. Convenience and time savings are such powerful drivers of IT that it needs little incremental policy support.

c. Carbon capture and storage (CCS) for enhanced oil recovery (EOR) using CO2. CCS is technically available, and potentially a game changer, enabling us to continue to use fossil fuels but with very low CO2 emissions. CO2-EOR is already economic using naturally occurring CO2, and is close to economic using captured CO2.  With very little policy support, EOR using captured CO2 could yield some near-term emission reductions while driving CCS costs down, thereby enabling enormous emission reductions in the future.

Q5. Energy efficiency has long been touted as the lowest hanging fruit to address the energy and climate change challenges. Many Asian countries have announced ambitious targets to cut their energy and carbon intensities. For example, as part of its 12th Five-Year Plan, China has indicated that it aims to cut energy intensity by 16 percent and carbon intensity by 17 percent in the next five years. Do you think Asian countries are doing enough? What more can they undertake to help combat climate change?

EC: Efficiency improvements that generate more economic output with less energy input are important for a variety of reasons, including energy supply security, pollution and greenhouse gas (GHG) emission reduction, and improvement of livelihoods. Countries such as Korea, China and India have taken significant measures to improve efficiency, with the result that the energy intensity of their economies has been lowering over the past decade.

Many energy efficiency measures are classified as "low hanging fruit," meaning the energy savings and other benefits they produce far outweigh the cost of investing in them. Asian countries are currently focusing on exploiting these low hanging fruit, notably in the industrial and power sectors, as well as in appliances and equipment, and large commercial and public buildings. Eventually, achieving additional energy savings will require more expensive investments, and targeting more difficult sectors, such as small and medium enterprises and households.

Asian governments will need to adjust policy tools to meet these new challenges. Policy certainty and appropriate price signals are important to ensure the efficiency improvement potentials of current investments are maximised. One way of providing these is through cap-and-trade type systems, such as those being considered or developed in China, India and Korea. This will also require the phase-out of subsidies that artificially decrease energy prices and encourage consumption rather than conservation. Though progress is slow, several Asian countries have taken or are taking steps in this direction as well.

Limiting the growth of or reducing energy consumption is, of course, essential. However, shifting to less carbon-intensive sources of energy is equally important in the medium to long term. As such, many Asian countries should also be commended for investing in developing less GHG-intensive energy sources.

Published by Singapore International Energy Week
Eileen Claussen
0
Syndicate content