Science

Agricultural and Forestlands: U.S. Carbon Policy

Agricultural  Forestlands

 

Agricultural & Forestlands: U.S. Carbon Policy Strategies

Prepared for the Pew Center on Global Climate Change
September 2006

By:
Kenneth R. Richards, Indiana University
R. Neil Sampson, The Sampson Group, Inc.
Sandra Brown, Winrock International

Press Release

Download Entire Report (pdf)

Click here if you are unable to download this report.

Foreword

The United States can capitalize on its substantial natural, institutional, and human resources to develop a strong, integrated, carbon sequestration program. The goals of a national sequestration strategy should include:

•  Achieving actual increases in carbon stocks on its forest and agricultural lands,
•  Maintaining existing carbon stocks,
•  Producing more reliable estimates of changes in the absolute levels of these stocks, and
•  Developing the methods needed to allow policy-makers to evaluate the effectiveness of government-sponsored sequestration programs.

Given the variety of activities, land types, and ownership patterns involved, policy-makers will need to include several different components in designing a national strategy for U.S. forest and agricultural lands. They will also need to draw on a variety of approaches to implement this strategy. To maximize results, government should employ the full range of policy tools at its disposal, including: direct government provision of information and increasing carbon on federal lands, regulations, practice-based incentives, and results-based mechanisms. Table 10 provides a summary of the many policy tools available to the government for implementing a national carbon sequestration program. Given the multiplicity of policy tools and mechanisms available, it will be important to assure that future programs complement each other and are presented to potential participants in a lucid manner.

As a first step in increasing carbon sequestration, the government should examine how it can modify management practices on its extensive land holdings to emphasize carbon sequestration in a manner that is consistent with other land management objectives such as habitat protection, erosion control, and timber production. The most promising avenue involves reducing the risk of catastrophic loss of forests to wildfires (see Box 2, page 17). The regulatory approach, which may be particularly helpful in preserving existing forests and decreasing losses of forest carbon on private land, must be implemented through state governments where the power to directly control land-use and management is vested. Recent experience suggests that private-sector certification programs like the SFI that promote adoption of best management practices for sustainable forests can provide an important supplement to state and local regulations.

In the past, the federal government has predominantly employed practice-based incentives to influence private landowner decisions. This tendency is reflected in the 2002 Farm Bill, which contains a number of programs that provide cost-sharing incentives for practices that enhance carbon stocks on the lands where the practices are adopted. These programs generally serve multiple objectives that include soil, water, and habitat conservation in addition to carbon sequestration. The 2002 Farm Bill increased funding for these programs substantially. Practice-based incentive programs have two advantages as vehicles for promoting carbon sequestration. First, they operate through established networks of organizations to implement the policies. This reduces both the financial and political costs of shifting the focus of farm programs toward carbon sequestration. Second, practice-based programs avoid the transaction costs associated with measuring, monitoring, and tracking site-specific changes in carbon stocks. They also rely on a less intrusive monitoring process since it is only necessary to check for the existence and extent of the practice, rather than determining actual carbon stocks. Thus, practice-based programs are likely to be the most cost-effective, familiar, and feasible components of a larger national strategy to promote carbon sequestration, at least in the near term.

To fully exploit the potential of practice-based approaches, the U.S. government must assure continued funding for the relevant programs. Volatility in program funding will reduce the effectiveness of the government’s financial resources as landowners hesitate to make long-term commitments due to programmatic uncertainty. The government should also establish a high priority research initiative to evaluate the carbon benefits and cost-effectiveness of Farm Bill initiatives. In particular, the research should examine whether the programs are inducing actual changes in practices beyond what landowners would have done in the absence of incentives. As these programs mature, the government should revisit the question of whether practice-based programs should be expanded. For example, if the Conservation Reserve Program (CRP) proves particularly successful, the government should consider increasing its funding level and removing the current cap of 39.2 million acres.

An important element of a national strategy will be to explore whether it is possible to develop a credible program incorporating results-based incentives for individual carbon sequestration projects. Results-based approaches have the advantage of providing high-powered incentives for innovative approaches to carbon sequestration. However, they are also less familiar than the well-established practice-based approach, and will require both overcoming information challenges and choosing among several options.

The first step to developing a program that bases incentives on the results of individual projects is to establish a viable, cost-effective method of measuring impacts of practice and land-use changes in specific locations. The government appears to have started this process with its program to reassess and redesign the 1605(b) reporting guidelines. Whether those revisions will provide guidelines that are adequate for a cap-and-trade program remains to be seen. Ultimately guidelines will need to provide methods that address development of reference cases, potential leakage, permanence, and effects on other greenhouse gases in a manner that is sufficiently clear and comprehensive so that independent evaluators of a given project will arrive at essentially the same estimate of carbon benefits.

The second step to adding a results-based approach to the national strategy is to determine how incentives will be provided to project developers. For example, the government could provide subsidies or contracts where payments to landowners are proportional to the amount of carbon actually sequestered. Alternatively, if there are caps on emissions of greenhouse gases from industrial sources, project developers might receive credits issued by the government, but the payments to project developers would come from sales of these credits to industrial sources which would use the credits to assist in meeting emissions limits.

Once key stakeholders are satisfied that methods are available that accurately assess the carbon effects of individual projects, then a results-based program for promoting carbon sequestration on agricultural and forestlands should be included in the national carbon strategy. Doing so will unleash the creativity and innovation of U.S. landowners and lead to lower overall costs of achieving national climate goals.

Opportunities for augmenting carbon sequestration may be even greater, and costs may be substantially lower, in developing countries than in the United States. Therefore, U.S. policy-makers should consider expanding the scope of a sequestration strategy to provide incentives for projects outside U.S. borders. The U.S. government could also work directly with other governments to identify, promote, and fund new policies and practices that will protect and increase carbon stocks in those countries. The incentives could be largely the same as for domestic initiatives, and could include practice-based or results-based payments. However, the process for including results from efforts in other countries in the national report would be different. Whereas the impacts of domestic initiatives would be included automatically in the inventory of national carbon stocks compiled by the United States under the U.N. Framework Convention on Climate Change, inclusion of international accomplishments would not be automatic (see Figure 1). Sequestration benefits achieved in other countries would have to be measured separately. The sum of these impacts would then be added to the national change in domestic stocks to estimate the total change in global carbon stocks for which the United States might claim credit. If the national strategy includes incentives for sequestration accomplishments in other countries, it will become even more critical to develop consistent methods for program and project evaluation.

Executive Summary

 

Agricultural and forestlands can play a key role as part of a comprehensive strategy to slow the accumulation of greenhouse gas emissions in the atmosphere. Much of the public discussion about using these lands as part of an overall strategy to address climate change results from the beliefs that forest and agriculture land-use and management options will be relatively low cost, and that biomass can play an important role in reducing the use of fossil fuels. In the near term, these lands can be managed to increase the quantity of carbon stored in soils and plant matter, thereby reducing net emissions of the primary greenhouse gas, carbon dioxide. In many cases the changes in land-use management that increase carbon storage provide multiple benefits—such as erosion control, water quality protection, and improved wildlife habitat—that by themselves justify the new practices. Over longer time horizons, agricultural and forestlands can produce biomass-based substitutes for fossil fuels, thereby further reducing emissions.

This report examines the wide array of ways in which forest and agricultural lands can be managed to store or “sequester” carbon and reduce net emissions (hereafter we use the term “sequestration” for the process by which carbon is removed from the atmosphere by plants and stored in soils and trees). It discusses a range of policies and programs that would promote this objective and evaluates them in terms of their cost, environmental effectiveness, and other considerations. The results of this analysis suggest that, by carefully designing and implementing a large-scale forest and agricultural carbon sequestration strategy, the United States could substantially reduce its net carbon dioxide emissions. A successful strategy is likely to encompass a variety of initiatives at the national, state, and local levels, and to involve both government and private parties. No single approach will suffice.

Much of the infrastructure needed to increase carbon sequestration on agricultural and forestlands is already in place. To capitalize on sequestration opportunities, the federal government will need to address the full range of practices available for conserving existing carbon stocks and for promoting additional carbon uptake and storage on forest, crop, and grazing lands. A successful national strategy will also need to be responsive to the different types of land and landowners involved, to draw on the existing network of organizations, and include a variety of policy tools. On public lands, for example, government agencies, personnel, and resources can be directly deployed to pursue sequestration goals. On private land, the federal government has typically had to rely on incentives to influence land management and use. Regulatory approaches have been used on private forestlands, but have been carried out by states because of historically stiff political resistance to federal intervention in state powers to regulate land use.

There are three basic ways in which forest and agricultural lands can contribute to greenhouse gas reduction efforts: conversion of non-forestlands to forests, preserving and increasing carbon in existing forests and agricultural soils, and growing biomass to be used for energy. The costs and potential contributions associated with these three strategies vary widely. Conversion of an estimated 115 million acres of marginal agricultural lands in the United States to forests could sequester an additional 270 million metric tons (MMT) of carbon per year over a period of 100 years, at marginal costs in the rangeof $50 per metric ton of carbon ($45 per short ton1). 270 MMT of carbon stored in forests would offset nearly 20 percent of current emissions of carbon dioxide from U.S. combustion of fossil fuels. However, 115 million acres equals nearly 1/3 of currently cultivated cropland and, even though some of this conversion might be economic, conversion on this scale would require a significant federal effort and likely meet with resistance from agricultural business and rural communities. Initial national studies also suggest that up to 70 MMT could be sequestered annually on agricultural lands through modification of agricultural practices if moderate incentives were available (up to $50 per metric ton of carbon; $12.50 per metric ton CO2). In addition, with yield improvements and cost reductions in the technologies, it may be possible to offset as much as 9 to 24 percent of current emissions through use of biofuels produced at costs competitive with fossil fuels.

In a perfect world the most cost-effective practices—both source control and carbon sequestration—would be adopted first, with more costly approaches implemented successively as net emission reduction goals require. In practice, many approaches may be used simultaneously for a combination of practical, programmatic, and political reasons.

Carbon sequestration programs will not be implemented in a policy vacuum. New program design will need to take existing programs, regulations, and resources into consideration, including the large and sophisticated infrastructure that supplies the nation’s many forest and agriculture landowners with educational, technical, and financial support. A key asset that the government has at its disposal is the resourcefulness of many of these landowners. Given practical and political considerations, incentive-based approaches combined with technical assistance are the most effective and feasible policy tools the federal government will have to begin implementing a domestic carbon sequestration strategy. Moreover, the structure needed to deliver incentives for sequestration is already in place in the form of numerous programs contained in the 2002 Farm Bill, including the Conservation Security Program, the Conservation Reserve Program, the Environmental Quality Incentives Program, and the Wildlife Habitat Incentives Program.

The government has a great deal of experience with these programs, and, although each was designed to promote specific activities or land management practices, many of the targeted practices also sequester carbon. The practice-based approaches incorporated in these programs have received broad political support. Indeed, it may well be possible to achieve substantial gains in carbon conservation and sequestration simply by relying on existing institutions and programs. In many cases, greater gains could be achieved by increasing budgets and expanding programs. Thus, the federal government should provide substantial and sustained funding for Farm Bill programs that have been successful in promoting carbon sequestration.

An alternative to providing incentives for specific activities or management practices is to employ results-based approaches that provide rewards to landowners in proportion to the actual amount of additional carbon sequestration they achieve. This approach is foreshadowed in the domestic 1605(b) voluntary reporting program. It is also reflected in the Clean Development Mechanism of the Kyoto Protocol at the international level. The advantage of a results-based approach is that it encourages private landowners and project developers to develop innovative land-management practices that are adapted to local conditions. Rather than prescribing the sequestration practices for which the government will pay, the results-based approach frees the landowner to take whatever steps are appropriate to increase carbon stocks, and the reward is directly proportional to the accomplishment.

Incentives or rewards in a results-based program could take several forms. Two leading candidates are subsidy payments and carbon credits. A subsidy payment would take the form of an announced price—in dollars per ton—that the government would pay for carbon sequestration. This approach could be implemented by modifying existing government incentive-based programs. Alternatively, carbon credits could be established in conjunction with a “cap-and-trade” program. Large point sources such as power plants could be allowed to meet their caps, at least partially, by purchasing emission credits awarded for increasing sequestration on forest and agricultural lands. This approach would allow private landowners to receive income for sequestering carbon and would assist entities subject to emission caps to meet their targets at lower costs.

However, results-based approaches are less familiar to the agricultural and forest communities than existing programs that provide incentives for specific practices. Moreover, if credits are allocated to individual landowners under a results-based approach, the government will have to insure that there are adequate methods to provide consistent, reliable, quantified estimates of the greenhouse gas impacts of changes in land management and use. If the government can gain broad acceptance for a results-based approach, and develop the estimation protocols needed to gauge the appropriate rewards, it may be possible to unleash substantial creativity among the broad range of landowners in the United States in achieving increased carbon sequestration.

The government can employ all of the approaches described in this report—providing educational programs through its extension services, enhancing sequestration on government land, urging states to adopt regulations that encourage carbon sequestration, providing incentives for sequestration-promoting practices, and developing results-based programs—to achieve the greatest effect.

Conclusions

The United States can capitalize on its substantial natural, institutional, and human resources to develop a strong, integrated, carbon sequestration program. The goals of a national sequestration strategy should include:

•  Achieving actual increases in carbon stocks on its forest and agricultural lands,
•  Maintaining existing carbon stocks,
•  Producing more reliable estimates of changes in the absolute levels of these stocks, and
•  Developing the methods needed to allow policy-makers to evaluate the effectiveness of government-sponsored sequestration programs.

Given the variety of activities, land types, and ownership patterns involved, policy-makers will need to include several different components in designing a national strategy for U.S. forest and agricultural lands. They will also need to draw on a variety of approaches to implement this strategy. To maximize results, government should employ the full range of policy tools at its disposal, including: direct government provision of information and increasing carbon on federal lands, regulations, practice-based incentives, and results-based mechanisms. Table 10 provides a summary of the many policy tools available to the government for implementing a national carbon sequestration program. Given the multiplicity of policy tools and mechanisms available, it will be important to assure that future programs complement each other and are presented to potential participants in a lucid manner.

As a first step in increasing carbon sequestration, the government should examine how it can modify management practices on its extensive land holdings to emphasize carbon sequestration in a manner that is consistent with other land management objectives such as habitat protection, erosion control, and timber production. The most promising avenue involves reducing the risk of catastrophic loss of forests to wildfires (see Box 2, page 17). The regulatory approach, which may be particularly helpful in preserving existing forests and decreasing losses of forest carbon on private land, must be implemented through state governments where the power to directly control land-use and management is vested. Recent experience suggests that private-sector certification programs like the SFI that promote adoption of best management practices for sustainable forests can provide an important supplement to state and local regulations.

In the past, the federal government has predominantly employed practice-based incentives to influence private landowner decisions. This tendency is reflected in the 2002 Farm Bill, which contains a number of programs that provide cost-sharing incentives for practices that enhance carbon stocks on the lands where the practices are adopted. These programs generally serve multiple objectives that include soil, water, and habitat conservation in addition to carbon sequestration. The 2002 Farm Bill increased funding for these programs substantially. Practice-based incentive programs have two advantages as vehicles for promoting carbon sequestration. First, they operate through established networks of organizations to implement the policies. This reduces both the financial and political costs of shifting the focus of farm programs toward carbon sequestration. Second, practice-based programs avoid the transaction costs associated with measuring, monitoring, and tracking site-specific changes in carbon stocks. They also rely on a less intrusive monitoring process since it is only necessary to check for the existence and extent of the practice, rather than determining actual carbon stocks. Thus, practice-based programs are likely to be the most cost-effective, familiar, and feasible components of a larger national strategy to promote carbon sequestration, at least in the near term.

To fully exploit the potential of practice-based approaches, the U.S. government must assure continued funding for the relevant programs. Volatility in program funding will reduce the effectiveness of the government’s financial resources as landowners hesitate to make long-term commitments due to programmatic uncertainty. The government should also establish a high priority research initiative to evaluate the carbon benefits and cost-effectiveness of Farm Bill initiatives. In particular, the research should examine whether the programs are inducing actual changes in practices beyond what landowners would have done in the absence of incentives. As these programs mature, the government should revisit the question of whether practice-based programs should be expanded. For example, if the Conservation Reserve Program (CRP) proves particularly successful, the government should consider increasing its funding level and removing the current cap of 39.2 million acres.

An important element of a national strategy will be to explore whether it is possible to develop a credible program incorporating results-based incentives for individual carbon sequestration projects. Results-based approaches have the advantage of providing high-powered incentives for innovative approaches to carbon sequestration. However, they are also less familiar than the well-established practice-based approach, and will require both overcoming information challenges and choosing among several options.

The first step to developing a program that bases incentives on the results of individual projects is to establish a viable, cost-effective method of measuring impacts of practice and land-use changes in specific locations. The government appears to have started this process with its program to reassess and redesign the 1605(b) reporting guidelines. Whether those revisions will provide guidelines that are adequate for a cap-and-trade program remains to be seen. Ultimately guidelines will need to provide methods that address development of reference cases, potential leakage, permanence, and effects on other greenhouse gases in a manner that is sufficiently clear and comprehensive so that independent evaluators of a given project will arrive at essentially the same estimate of carbon benefits.

The second step to adding a results-based approach to the national strategy is to determine how incentives will be provided to project developers. For example, the government could provide subsidies or contracts where payments to landowners are proportional to the amount of carbon actually sequestered. Alternatively, if there are caps on emissions of greenhouse gases from industrial sources, project developers might receive credits issued by the government, but the payments to project developers would come from sales of these credits to industrial sources which would use the credits to assist in meeting emissions limits.

Once key stakeholders are satisfied that methods are available that accurately assess the carbon effects of individual projects, then a results-based program for promoting carbon sequestration on agricultural and forestlands should be included in the national carbon strategy. Doing so will unleash the creativity and innovation of U.S. landowners and lead to lower overall costs of achieving national climate goals.

Opportunities for augmenting carbon sequestration may be even greater, and costs may be substantially lower, in developing countries than in the United States. Therefore, U.S. policy-makers should consider expanding the scope of a sequestration strategy to provide incentives for projects outside U.S. borders. The U.S. government could also work directly with other governments to identify, promote, and fund new policies and practices that will protect and increase carbon stocks in those countries. The incentives could be largely the same as for domestic initiatives, and could include practice-based or results-based payments. However, the process for including results from efforts in other countries in the national report would be different. Whereas the impacts of domestic initiatives would be included automatically in the inventory of national carbon stocks compiled by the United States under the U.N. Framework Convention on Climate Change, inclusion of international accomplishments would not be automatic (see Figure 1). Sequestration benefits achieved in other countries would have to be measured separately. The sum of these impacts would then be added to the national change in domestic stocks to estimate the total change in global carbon stocks for which the United States might claim credit. If the national strategy includes incentives for sequestration accomplishments in other countries, it will become even more critical to develop consistent methods for program and project evaluation.

Author Bios

Kenneth Richards
Associate Professor
School of Public and Environmental Affairs
Indiana University

Kenneth Richards is Associate Professor at Indiana University’s School of Public and Environmental Affairs and Director of the IU at Oxford program. He holds a Ph.D. in Public Policy from the Wharton School and a J.D. from the Law School, University of Pennsylvania. He holds an MSCE in Urban and Regional Planning, a BSCE in Environmental Engineering from Northwestern University, and a BA in Botany and Chemistry from Duke University.

Prof. Richards has served as an economist with the Council of Economic Advisers, the USDA Economic Research Service, and the US Department of Energy's Pacific Northwest National Laboratory. He also was the national energy planner for the Cook Islands from 1984 to 1986. His research interests include climate change policy and environmental policy implementation and management.

R. Neil Sampson
President
The Sampson Group, Inc.

R. Neil Sampson holds a B.S. degree in Agriculture (Crops and Soils) from the University of Idaho and a Master’s in Public Administration from Harvard University.   He is President of the Sampson Group, and a partner at Vision Forestry, LLC, a consulting firm that manages some 80,000 acres of sustainably-managed forests.  Mr. Sampson also serves as a Research Scientist with the Yale School of Forestry and Environmental Studies, as Affiliate Professor in the Department of Forest Resources at the University of Idaho, and as technical Advisor to the Utility Forest Carbon Management Program of Edison Electric Institute, the International Carbon Mitigation Program of The Nature Conservancy, and the National Carbon Offset Coalition.  He also serves as Executive Secretary of the External Review Panel to the Sustainable Forestry Initiative, sponsored by the American Forest & Paper Association.

He has authored two books on soil conservation, and edited many books on natural resource topics in addition to publishing over 100 scientific and popular articles on natural resource topics.    

Prior to becoming President of the Sampson Group, Mr. Sampson’s career included service with the Soil Conservation Service (now Natural Resources Conservation Service), the National Association of Conservation Districts, and the American Forestry Association (now American Forests). In 2001, he was the F.K. Weyerhaeuser Visiting Fellow at the Yale School.   He periodically serves as an adjunct professor at Virginia Tech’s Northern Virginia Campus.

Sandra Brown
Senior Scientist
Winrock International
Ecosystem Services Unit

Sandra Brown has a PhD in systems ecology from the Department of Environmental Engineering Sciences, University of Florida, a MS. in engineering science from the University of South Florida, and a BS in chemistry from the University of Nottingham, England. She has been employed as Senior Scientist in the Ecosystems Services Unit of Winrock International since 1998. Prior to joining Winrock, she was a Professor in the Department of Forestry at the University of Illinois in Champaign-Urbana.  Dr. Brown has more than 25 years of experience in planning, developing, implementing, and managing government and private-sector-funded projects focusing on understanding the role of forests in the global carbon cycle and their present and potential future role in climate change and mitigation This work has resulted in more than 180 peer-reviewed publications, including five chapters in Intergovernmental Panel on Climate Change (IPCC) reports where was the a co-convening lead author.

Eileen Claussen, President, Pew Center on Global Climate Change

The vast lands of the United States offer significant opportunities to contribute to solving the problem of climate change. At costs well under $100 per ton of carbon, it may be possible to offset nearly 20 percent of current U.S. carbon dioxide emissions through reforesting marginal agricultural lands and restoring carbon to agricultural soils through practices such as no-till and improved crop rotations. Emissions can also be reduced by substituting biomass energy for fossil fuels and by reducing the intensity of wildfires through thinning and removing excess debris. However, for U.S. forest and agricultural lands to play a significant role in curbing climate change, a substantial national policy commitment will be necessary.

This report reviews the available resources and considers the range of policy approaches that would include U.S. forest and agricultural lands in a domestic policy. Kenneth Richards, Neil Sampson, and Sandra Brown identify four basic policy approaches and find that different approaches are suited to different lands. The approaches also vary with regard to who bears the implementation costs—the public at large or specific groups within it—and in expected magnitude of results. For these reasons, a successful forest and agricultural lands program will require some mix of the four approaches:

• Changing practices on public lands,
• Land use regulations on privately owned forestlands,
• Practice-based incentives for forest and agricultural lands, and
• Results-based incentives for forest and agricultural lands.

They find that:

• U.S. Department of Agriculture programs that encourage best practices are familiar to and popular with farmers and forestland owners. As a result, we should evaluate those programs and expand the most effective ones.

• We need to do a better job of having landowners, rather than the government, be the ones to determine what information they need.

• Regulation of private land is primarily an opportunity for state and local government rather than the federal government.

• Results-based incentives, i.e., offering payments per ton of sequestered carbon, can encourage more cost-effective and innovative approaches, but will require development and agreement on consistent and reliable accounting methods.

So how should this inform policy-making? First, we should include land-based sequestration in federal legislation, including the Farm Bill and proposals that address climate change. Second, we should promote opportunities for farmers to move from traditional crop support to environmental and energy-security goals. Third, we should be managing large tracts of forestland sustainably, thus providing both for sequestration and habitat.

This report is being released with a companion report, The Role of Agriculture in Greenhouse Gas Mitigation. While this paper focuses on policy options, the companion report reviews the economic and technological opportunities available to farmers—including using cropland to produce biofuels—and estimates the greenhouse gas reductions that could be achieved. Taken together, these reports provide a comprehensive review of the role of U.S. forest and agricultural lands in a domestic climate change program. The Pew Center and the authors would like to express appreciation to Craig Cox, Debbie Reed and Brent Sohngen for reviewing and providing suggestions on an early draft of this report.

Executive Summary

 

Agricultural and forestlands can play a key role as part of a comprehensive strategy to slow the accumulation of greenhouse gas emissions in the atmosphere. Much of the public discussion about using these lands as part of an overall strategy to address climate change results from the beliefs that forest and agriculture land-use and management options will be relatively low cost, and that biomass can play an important role in reducing the use of fossil fuels. In the near term, these lands can be managed to increase the quantity of carbon stored in soils and plant matter, thereby reducing net emissions of the primary greenhouse gas, carbon dioxide. In many cases the changes in land-use management that increase carbon storage provide multiple benefits—such as erosion control, water quality protection, and improved wildlife habitat—that by themselves justify the new practices. Over longer time horizons, agricultural and forestlands can produce biomass-based substitutes for fossil fuels, thereby further reducing emissions.

This report examines the wide array of ways in which forest and agricultural lands can be managed to store or “sequester” carbon and reduce net emissions (hereafter we use the term “sequestration” for the process by which carbon is removed from the atmosphere by plants and stored in soils and trees). It discusses a range of policies and programs that would promote this objective and evaluates them in terms of their cost, environmental effectiveness, and other considerations. The results of this analysis suggest that, by carefully designing and implementing a large-scale forest and agricultural carbon sequestration strategy, the United States could substantially reduce its net carbon dioxide emissions. A successful strategy is likely to encompass a variety of initiatives at the national, state, and local levels, and to involve both government and private parties. No single approach will suffice.

Much of the infrastructure needed to increase carbon sequestration on agricultural and forestlands is already in place. To capitalize on sequestration opportunities, the federal government will need to address the full range of practices available for conserving existing carbon stocks and for promoting additional carbon uptake and storage on forest, crop, and grazing lands. A successful national strategy will also need to be responsive to the different types of land and landowners involved, to draw on the existing network of organizations, and include a variety of policy tools. On public lands, for example, government agencies, personnel, and resources can be directly deployed to pursue sequestration goals. On private land, the federal government has typically had to rely on incentives to influence land management and use. Regulatory approaches have been used on private forestlands, but have been carried out by states because of historically stiff political resistance to federal intervention in state powers to regulate land use.

There are three basic ways in which forest and agricultural lands can contribute to greenhouse gas reduction efforts: conversion of non-forestlands to forests, preserving and increasing carbon in existing forests and agricultural soils, and growing biomass to be used for energy. The costs and potential contributions associated with these three strategies vary widely. Conversion of an estimated 115 million acres of marginal agricultural lands in the United States to forests could sequester an additional 270 million metric tons (MMT) of carbon per year over a period of 100 years, at marginal costs in the rangeof $50 per metric ton of carbon ($45 per short ton1). 270 MMT of carbon stored in forests would offset nearly 20 percent of current emissions of carbon dioxide from U.S. combustion of fossil fuels. However, 115 million acres equals nearly 1/3 of currently cultivated cropland and, even though some of this conversion might be economic, conversion on this scale would require a significant federal effort and likely meet with resistance from agricultural business and rural communities. Initial national studies also suggest that up to 70 MMT could be sequestered annually on agricultural lands through modification of agricultural practices if moderate incentives were available (up to $50 per metric ton of carbon; $12.50 per metric ton CO2). In addition, with yield improvements and cost reductions in the technologies, it may be possible to offset as much as 9 to 24 percent of current emissions through use of biofuels produced at costs competitive with fossil fuels.

In a perfect world the most cost-effective practices—both source control and carbon sequestration—would be adopted first, with more costly approaches implemented successively as net emission reduction goals require. In practice, many approaches may be used simultaneously for a combination of practical, programmatic, and political reasons.

Carbon sequestration programs will not be implemented in a policy vacuum. New program design will need to take existing programs, regulations, and resources into consideration, including the large and sophisticated infrastructure that supplies the nation’s many forest and agriculture landowners with educational, technical, and financial support. A key asset that the government has at its disposal is the resourcefulness of many of these landowners. Given practical and political considerations, incentive-based approaches combined with technical assistance are the most effective and feasible policy tools the federal government will have to begin implementing a domestic carbon sequestration strategy. Moreover, the structure needed to deliver incentives for sequestration is already in place in the form of numerous programs contained in the 2002 Farm Bill, including the Conservation Security Program, the Conservation Reserve Program, the Environmental Quality Incentives Program, and the Wildlife Habitat Incentives Program.

The government has a great deal of experience with these programs, and, although each was designed to promote specific activities or land management practices, many of the targeted practices also sequester carbon. The practice-based approaches incorporated in these programs have received broad political support. Indeed, it may well be possible to achieve substantial gains in carbon conservation and sequestration simply by relying on existing institutions and programs. In many cases, greater gains could be achieved by increasing budgets and expanding programs. Thus, the federal government should provide substantial and sustained funding for Farm Bill programs that have been successful in promoting carbon sequestration.

An alternative to providing incentives for specific activities or management practices is to employ results-based approaches that provide rewards to landowners in proportion to the actual amount of additional carbon sequestration they achieve. This approach is foreshadowed in the domestic 1605(b) voluntary reporting program. It is also reflected in the Clean Development Mechanism of the Kyoto Protocol at the international level. The advantage of a results-based approach is that it encourages private landowners and project developers to develop innovative land-management practices that are adapted to local conditions. Rather than prescribing the sequestration practices for which the government will pay, the results-based approach frees the landowner to take whatever steps are appropriate to increase carbon stocks, and the reward is directly proportional to the accomplishment.

Incentives or rewards in a results-based program could take several forms. Two leading candidates are subsidy payments and carbon credits. A subsidy payment would take the form of an announced price—in dollars per ton—that the government would pay for carbon sequestration. This approach could be implemented by modifying existing government incentive-based programs. Alternatively, carbon credits could be established in conjunction with a “cap-and-trade” program. Large point sources such as power plants could be allowed to meet their caps, at least partially, by purchasing emission credits awarded for increasing sequestration on forest and agricultural lands. This approach would allow private landowners to receive income for sequestering carbon and would assist entities subject to emission caps to meet their targets at lower costs.

However, results-based approaches are less familiar to the agricultural and forest communities than existing programs that provide incentives for specific practices. Moreover, if credits are allocated to individual landowners under a results-based approach, the government will have to insure that there are adequate methods to provide consistent, reliable, quantified estimates of the greenhouse gas impacts of changes in land management and use. If the government can gain broad acceptance for a results-based approach, and develop the estimation protocols needed to gauge the appropriate rewards, it may be possible to unleash substantial creativity among the broad range of landowners in the United States in achieving increased carbon sequestration.

The government can employ all of the approaches described in this report—providing educational programs through its extension services, enhancing sequestration on government land, urging states to adopt regulations that encourage carbon sequestration, providing incentives for sequestration-promoting practices, and developing results-based programs—to achieve the greatest effect.

Conclusions

 

 

 

0

Congressional Testimony of Jay Gulledge - Examining the "Hockey Stick" Controversy

TESTIMONY

JAY GULLEDGE, Ph.D., SENIOR FELLOW
PEW CENTER ON GLOBAL CLIMATE CHANGE

July 27, 2006

At the U.S. House of Representatives Committee on Energy and Commerce, Subcommittee on Oversight and Investigations Hearing: Questions Surrounding the ‘Hockey Stick’ Temperature Studies: Implications for Climate Change Assessments

Examining the "Hockey Stick" Controversy

View slides related to this testimony (pdf).

Mr. Chairman, Ranking Member, and Members of the Committee:

Thank you for the opportunity to speak today. I am Jay Gulledge, Ph.D., Senior Research Fellow for Science and Impacts at the Pew Center on Global Climate Change. I am also an Adjunct Assistant Professor at the University of Louisville, which houses my academic research program on carbon cycling.

The Pew Center on Global Climate Change is a non-profit, non-partisan and independent organization dedicated to providing credible information, straight answers and innovative solutions in the effort to address global climate change. In our eight years of existence, we have published almost seventy reports by experts in climate science, economics, policy and solutions, all of which have been peer-reviewed and reviewed as well by the companies with which we work.

Forty-one major companies sit on the Pew Center’s Business Environmental Leadership Council, spanning a range of sectors, including oil and gas (BP, Shell), transportation (Boeing, Toyota), utilities (PG&E, Duke Energy, Entergy), high technology (IBM, Intel, HP), diversified manufacturing (GE, United Technologies), and chemicals (DuPont, Rohm and Haas). Collectively, the 41 companies represent two trillion dollars in market capitalization and three million employees. The members of the Council work with the Pew Center to educate the public on the risks, challenges and solutions to climate change.

If you take nothing else from my testimony, please take these three points:

1. The scientific evidence of significant human influence on climate is strong and would in no way be weakened if there were no Mann hockey stick.

2. The scientific debate over the Medieval Warm Period (MWP) has been gradually evolving for at least 20 years. The results of the Mann hockey stick simply reflect the gradual development of thought on the issue over time.

3. The impact of the McIntyre and McKitrick critique on the original Mann paper, after being scrutinized by the National Academy of Science, the Wegman panel and a number of meticulous individual research groups, is essentially nil with regard to the conclusions of the Mann paper and the 2001 IPCC assessment.

The science of climate change is an extraordinary example of a theory-driven, data-rich scientific paradigm, the likes of which, arguably, has not occurred since the development of quantum mechanics in the first half of the twentieth century. The product of this strong scientific framework is a body of strong, multifaceted evidence that man-made greenhouse gases are causing contemporary global warming, and that this warming trend is inducing large-scale changes in global climate. The primary evidence is based on physical principles and observational and experimental analysis of contemporary climate dynamics, as opposed to analyses of past climates, which are the subject of this hearing. We can now say with confidence that the evidence of human influence on climate is strong, as described by Dr. Cicerone.

Although paleoclimatology – the study of ancient climates – is an important part of the climate science framework, reconstructions of temperature over the past millennium play a secondary, expendable role in the larger body of evidence, as stated in the recent NAS report titled, Surface Temperature Reconstructions for the Last 2,000 Years: “Surface temperature reconstructions are consistent with other evidence of global climate change and can be considered as additional supporting evidence” (National Research Council 2006, p. 23; hereafter referred to as the NAS report). Dispensing with such reconstructions entirely or proving them fundamentally flawed would have little, if any, impact on our understanding of contemporary climate change. This statement does not imply that millennial climate reconstructions are unimportant, but their main influence will be in the future, when their potential to reveal how climate varied across the earth’s surface from year-to-year in the past (i.e. an annual record of spatially explicit climate dynamics) is fully realized. At that point, such reconstructions will be used in a manner parallel to thermometer records today. This capability would contribute significantly to resolving the current genuine debate in climate science, which is not about whether humans are changing the climate—a point over which there is no scientific controversy—but is about how much human influences will change the climate in the future as a result of greenhouse gas accumulation and other forcings we apply to the climate system. In other words, the goal of spatially explicit paleoclimate reconstructions is to help climatologists determine how physical forcings, such as solar radiation, volcanic eruptions, land-use changes, and changes in atmospheric greenhouse gases, have affected the planet in the past, so that we can improve estimates of how they will do so in the future.

The early MBH reconstructions (Mann et al. 1998; Mann et al. 1999; hereafter referred to as MBH98 or MBH99 or, collectively, MBH) were the first to offer spatially explicit climate reconstructions and therefore represented a breakthrough in climate change science that continues to develop and promises to further our understanding of climate physics in the future. The Wegman report’s conclusion that paleoclimatology “does not provide insight and understanding of the physical mechanisms of climate change” (p. 52), fails to appreciate that the purpose of Dr. Mann’s research is to improve our knowledge of physical mechanisms of climate change by examining how they operated in the past.

Turning our attention to the methodological issues this hearing seeks to investigate, in my opinion, the Wegman report failed to accomplish its primary objective, which was “to reproduce the results of [McIntyre & McKitrick] in order to determine whether their criticisms are valid and have merit” (p. 7). Although the panel reproduced MM's work—verbatim—it only partially assessed the validity, and did not at all assess the merits, of the criticisms directed toward the MBH reconstructions. For instance, MM (McIntyre and McKitrick 2003; McIntyre and McKitrick 2005; heafter referred to collectively as MM) allege that the so-called MBH “hockey stick” result is biased by methodological errors that undermine the conclusion that the late 20th century was uniquely warm relative to the past 1,000 years. This critique only has merit if, after correcting for the errors pointed out by MM, the resulting reconstruction yields results significantly different from the original result that can no longer support the claim of unusual late 20th century warmth. However, the Wegman Report takes no steps to make such a determination.

Fortunately, a different group, one well qualified both statistically and climatologically to tackle this question of merit, had already performed the task several months before the Wegman Report was released. The study by Wahl & Ammann (In press; hereafter referred to as WA06), was peer-reviewed and accepted for publication in the journal Climatic Change early last spring, and has been publicly available in accepted form since last March (http://www.cgd.ucar.edu/ccr/ammann/millennium/refs/ WahlAmmann_ClimChange2006.html). This study, titled, Robustness of the Mann, Bradley, Hughes Reconstruction of Northern Hemisphere Surface Temperatures: Examination of Criticisms Based on the Nature and Processing of Proxy Climate Evidence, carefully reproduced the MBH98 reconstruction and then used their faithful reproduction to test MM’s suggested corrections. They tested each of the criticisms raised by MM in all of their published papers, including both the peer-reviewed and non-peer-reviewed papers. Given that this report specifically examined MM’s criticisms, including the decentering issue that was the main focus of the Wegman report, it is unfortunate that the Wegman report dismissed it in a footnote (p. 48) as “not to the point.”

WA06 have performed a meticulous and thorough evaluation of MBH98, and the answers that this committee seeks about the MBH reconstructions are to be found within this report. After examining each of MM’s three methodological criticisms, WA06 accepted two of them as valid, and have used them to correct the MBH98 reconstruction. I will now show you what effect these corrections have on the MBH98 reconstruction, and then reconsider the uniqueness of the late 20th-century warming trend in the light of these corrections.

The original MBH98 “hockey stick” is shown as a gray line (Fig. 1). The WA06 reproduction of MBH98 is shown in red (Fig. 1). Except for a couple of minor simplifications, WA06 remained faithful to the original MBH method and retained all of the original MBH data, including the original instrumental temperature series from 1992. They wrote their own computer code to perform the calculations, using the R programming language, as recommended by the MM and the Wegman report, rather than the original Fortran language used by Dr. Mann. As you can see, the two reconstructions are materially the same. This result demonstrates that MBH98 can be reproduced based on information available in the original MBH papers and supplemental information and data available on the Internet.

July 27 2006 Testimony Figure 1

July 27 2006 Testimony Figure 2

With this successful reproduction in hand, WA06 were able to test the effects of each of MM’s criticisms on the outcome of the MBH98 reconstruction. After carefully considering the validity of MM’s three criticisms of MBH’s reconstruction methodology, WA06 agreed that 1) decentering the proxy data prior to Principle Component analysis and 2) including the poorly replicated North American Gaspé tree-ring series from 1400-1449 both affected the MBH results. After correcting for these effects, WA06 obtained the results shown in blue (Fig. 2, left frame). The result is a slightly warmer (0.1 °C) early 15th century, with no other time period affected. MM’s third methodological criticism surrounding the inclusion of the bristlecone/foxtail pine series was rejected for several reasons. The right frame in Fig. 2 illustrates that excluding these series has little effect on the MBH98 reconstruction, except to force it to begin in 1450 instead of 1400, because of lack of a data. Since the exclusion had little effect, and losing these data series would hinder reconstructions of earlier climate, WA06 rejected this criticism.

July 27 2006 Testimony Figure 3

The additional 15th-century warmth revealed by making the valid MM corrections still does not approach the warmth of the late 20th century, so MM’s critique cannot yet be said to have merit. However, the corrected result creates the impression of an upward temperature trend backward in time before 1400, begging the question of what would happen to the Middle Ages in the 1,000-year MBH99 reconstruction if it were also corrected? Answering that question is requisite for determining the merit of MM’s critique of MBH. The original 1,000-year MBH99 reconstruction is shown in blue and the corrected version is shown in red (Fig. 3; Ammann & Wahl, submitted). Carrying the correction back to the full millennium reveals that the largest effects remain in the early 15th century, and both earlier and later periods were less affected. Therefore, there is very little difference between the corrected MBH98 and MBH99 reconstructions and the originals, and the original observation that the late 20th century is uniquely warm in the context of the past 1,000 years is not affected. Hence, the valid methodological caveats that MM pointed out do not undermine the main conclusions of the original MBH papers or the conclusion of the 2001 IPCC assessment.

The scientific debate over the Medieval Warm Period (MWP) has been on the same trajectory for at least 20 years, with early indications that the MWP was not a globally coherent event becoming more solid over time. The MBH99 reconstruction represented an evolutionary step—not a revolutionary change—in this established trajectory. The 1990 IPCC figure that Mr. McIntyre, the Wall Street Journal editorial page, and Dr. Wegman have used in their own assessment of past climate is a cartoon, as stated by Dr. Wegman in his testimony last week. I have confirmed this with a number of individuals who were involved with the 1990 IPCC report or with versions of the schematic that pre-dated the 1990 IPCC report. The schematic is not a plot of data and is inappropriate as a comparison to MBH. The text of the 1990 IPCC report clearly states that the figure is a "schematic diagram" and that “it is still not clear whether all the fluctuations indicated were truly global” (p. 202). Furthermore, only three sources of information were cited and those sources conflicted on whether the Northern Hemisphere was warm or cold: “The late tenth to early thirteenth centuries… appear to have been exceptionally warm in parts of western Europe, Iceland and Greenland… China was, however, cold at this time, but South Japan was warm…” Clearly, this report certainly did not paint a picture of any consensus regarding a Medieval Warm Period as a hemisphere-wide phenomenon and characterizing it as such reveals a fundamental misunderstanding of climate science.

The 1992 and 1995 IPCC reports continued this same trajectory of thought. Four years before MBH99, citing 6 papers—still a very limited number, but twice as many as were cited in 1990—the 1995 report stated:

There are, for this last millennium, two periods which have received special attention, the Medieval Warm Period and the Little Ice Age. These have been interpreted, at times, as period of global warmth and coolness, respectively. Recent studies have re-evaluated the interval commonly known as the Medieval Warm Period to assess the magnitude and geographical extent of any prolonged warm interval between the 9th and 14th centuries… The available evidence is limited (geographically) and is equivocal. …a clearer picture may emerge as more and better calibrated proxy records are produced. However, at this point, it is not yet possible to say whether, at a hemispheric scale, temperatures declined from the 11-12th to the 16-17th century. Nor, therefore, is it possible to conclude that the global temperatures in the Medieval Warm Period were comparable to the warm decades of the late 20th century” (p. 174).

Remember that this was written by a team of climatologists as a consensus statement. The consensus at this time, as in 1990 and 1995, was that there was no strong evidence of a hemisphere-wide MWP.

Continuing the same trajectory, the 2001 IPCC Third Assessment Report examined evidence from 10 cited sources for the MWP. The consensus at this point seemed to be turning to the conclusion that there actually was a generally warm Northern Hemisphere during the Middle Ages, but that it was not a strong, coherent pattern of warming:

It is likely that temperatures were relatively warm in the Northern Hemisphere as a whole during the earlier centuries of the millennium, but it is much less likely that a globally-synchronous, well defined interval of “Medieval warmth” existed, comparable to the near global warmth of the late 20th century… Marked warmth seems to have been confined to Europe and regions neighboring the North Atlantic.

Since the MBH reconstructions were hemisphere-wide, and the MWP probably was not, it should not surprise us that the reconstructions lack a strong MWP (MBH99 does show slightly warmer temperatures in the 9th to 14th centuries than in the 15th to 19th centuries).

All available evidence indicates that the situation during the Middle Ages was fundamentally different that what is happening with climate today, which is a well-documented, globally coherent warming trend that is happening North, South, East, and West; at low latitudes and high latitudes; over land and over—and into—the sea. There are new data, published earlier this year, indicating that the atmosphere above Antarctica has warmed dramatically in recent decades (Turner et al. 2006). There is no large region on Earth where large-scale 20th century warming has not been detected, which simply cannot be said of the MWP.

Wahl and Ammann (2006) have demonstrated that the results of MBH are robust “down in the weeds”:

Our examination does suggest that a slight modification to the original Mann et al. reconstruction is justifiable for the first half of the 15th century (~ +0.05°), which leaves entirely unaltered the primary conclusion of Mann et al. (as well as many other reconstructions) that both the 20th century upward trend and high late-20th century hemispheric surface temperatures are anomalous over at least the last 600 years.

The NAS has affirmed the MBH results are also robust in the bigger picture, as well:

The basic conclusion of MBH99 was that the late 20th century warmth in the Northern Hemisphere was unprecedented during at least the last 1,000 years. This conclusion has subsequently been supported by an array of evidence that includes both additional large-scale surface temperature reconstructions and pronounced changes in a variety of local proxy indicators, such as melting on icecaps and the retreat of glaciers around the world, which in many cases appear to be unprecedented during at least the last 2,000 years. Not all individual proxy records indicate that the recent warmth is unprecedented, although a larger fraction of geographically diverse sites experienced exceptional warmth during the late 20th century than during any other extended period from A.D. 900 onward. (p. 3)

Examination of the IPCC reports through time, as well as the primary scientific literature, reveals why the MBH results are so robust—MBH simply assimilated all the available evidence into a quantitative reconstruction—evidence that had already been evaluated qualitatively as lacking a coherent MWP.

This committee is seeking to know the significance of the criticisms leveled at the MBH reconstruction for climate change assessments. The significance is that these criticisms have resulted in the most thoroughly vetted single climate study in the history of climate change research. Dr. Tom Karl summarized the impact most succinctly in his testimony to this committee last week when he said that he would stand by the IPCC’s original assessment: “If you ask me to give qualifications about the findings in the 2001 report with the same caveat in terms of defining likelihood, I personally would not change anything.” Hence, the impact of the MM critique, after being scrutinized by the NAS, the Wegman panel, and a number of meticulous individual research groups, is essentially nil with regard to the conclusions of MBH and the 2001 IPCC assessment.

Also relevant to this committee's questions about climate change assessments is the revelation that climate scientists do know their business, and that a lack of knowledge of geophysics is a genuine handicap to those who would seek to provide what they deem "independent review.” If the assessment of climate science presented in Mr. McIntyre's presentation to the NAS committee, the Wegman Report, and the WSJ is an example of what can be expected from those who have not conducted climate research, then the investigation launched by this committee has demonstrated clearly that “independent review” by non-climate scientists is an exceedingly ineffective way to make climate change assessments.

References

Mann, M E, R S Bradley and M K Hughes (1998). "Global-scale temperature patterns and climate forcing over the past six centuries." Nature 392(6678): 779-787.

Mann, M E, R S Bradley and M K Hughes (1999). "Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations." Geophysical Research Letters 26(6): 759-762.

McIntyre, S and R McKitrick (2003). "Corrections to the Mann et al. (1998) proxy data base and northern hemisphere average temperature series." Energy & Environment 14(6): 751-771.

McIntyre, S and R McKitrick (2005). "Hockey sticks, principal components, and spurious significance." Geophysical Research Letters 32(3).

National Research Council, C O S T R F T L, 000 Years. (2006). "Surface temperature reconstructions for the last 2,000 years." from http://www.nap.edu/catalog/ 11676.html.

Turner, J, T a Lachlan-Cope, S Colwell, et al. (2006). "Significant warming of the Antarctic winter troposphere." Science 311: 1914-1917.

Wahl, E and C Ammann (In press). "Robustness of the Mann, Bradley, Hughes reconstruction of northern hemisphere surface temperatures: Examination of criticisms based on the nature and processing of proxy climate evidence." Climatic Change (accepted).

An Agenda for Climate Action

AN AGENDA FOR CLIMATE ACTION

SPEECH BY EILEEN CLAUSSEN
PRESIDENT, PEW CENTER ON GLOBAL CLIMATE CHANGE

YALE SCHOOL OF FORESTRY AND ENVIRONMENTAL STUDIES
NEW HAVEN, CONNECTICUT

MARCH 30, 2006

Thank you very much.   It is great to be here at Yale.  I want to open my remarks today with some polling numbers.  And I know what some of you may be thinking.  You’re thinking this is a typical Washington thing to do: talk about polls.  And you’re thinking about how polls really don’t get at the real issues.  And you may be right, particularly in this era of television and internet insta-polls.  

I was watching BBC Television shortly after the death of Slobodan Milosevic and the announcer asked viewers to call in with their opinions on this question: “How will Milosevic’s death affect the future of peace in the Balkans?”   And I thought that’s really a fairly sophisticated question.  Sort of the kind of essay question you might have to respond to here at Yale.  And fairly typical, I imagine, of BBC’s expectations of its audience.

In contrast, if you turn on CNN or FOX or one of the other American cable networks, the questions tend to be of the quick yes or no variety.   Here is an actual CNN online poll I found on the Internet: “Would you consider having microchips implanted in your body?  Yes or no.”  I can only imagine how someone might use these results.   

But seriously, I think we can all learn something from looking at the polling on an issue such as climate change, especially when it reveals a clear divergence between public opinion and what is happening in Washington to address this issue.

Just a couple of weeks ago, a national survey showed that Americans of all political beliefs are not happy with the U.S. government’s leadership (or lack thereof) on the issues of global warming and alternative energy. More than three out of four – including two out of three conservatives – said the federal government is not doing enough on either of these issues. And nearly nine out of ten agreed with the following statement—and I quote: “U.S. leaders should take steps to reduce carbon pollution now and speed up the conversion to renewable energy and other alternatives.”

Nine out of ten people. That’s higher than the proportion of dentists who recommend sugarless gum for their patients who chew gum. Seriously, it is an overwhelming majority of Americans. And they all want to see something done to address the climate issue and to put America on a path to a low-carbon future.

Of course, President Bush and Vice President Cheney say they don’t pay attention to polls – and this is one time when I believe them. Because if they were to pay attention to polls, they would be doing something serious to solve the climate problem. In ever-increasing numbers, Americans recognize that we are facing a potential crisis here, and they are looking to their elected leaders in Washington to shape solutions.

I am here today to talk about what those solutions might entail—and I want to do that by focusing on a comprehensive plan to reduce greenhouse gas emissions in the United States that the Pew Center released in February. But I want to start with a brief look at the science of climate change, as well as what is happening now at both the state level and nationally.

Then I want to reserve the rest of my remarks to talk about the Pew Center’s Agenda – because what is happening right now in this country is clearly not enough.

The Science of Climate Change

So first the science. The polling data I talked about shows a pronounced shift in Americans’ views on the climate issue and what to do about it. And the main reason for this shift is not that people are beginning to notice that it’s getting warmer or that the pond over at the town park just isn’t freezing as much in the winter as it used to.

No, what’s happening is that people are beginning to pay attention to the science on this issue. And they are coming to understand that there is no longer any doubt about it: climate change is a very real and very serious problem.

Scientists now know for certain that the globe has been warming for the past century. They also know that human activities, mainly the burning of coal and oil, but also agriculture and deforestation, have dramatically increased concentrations of heat-trapping gases in the atmosphere

In just the past year, the science linking observed climate change directly to human activities has become increasingly solid. And the impacts of climate change, distributed across the globe, are occurring in patterns that can only be explained by human activities and not by natural variations in regional climate. During the first half of the 20th century, natural factors may have been as important as anthropogenic factors. Unfortunately, the more dramatic warming that has occurred since then has been dominated by the human influence. The science is now clear on this point.

But what is really changing how people view this issue is that the impacts we are seeing now—today—are happening much sooner than anyone might have anticipated even a decade ago. These changes were predicted, but even the scientists who made the predictions are surprised at the rate at which they are now occurring.

What do we know about the impacts of climate change?

We know that ice cover around the world is changing at an unprecedented rate. Just last month, new satellite-based measurements of ice flow in Greenland were published in the Journal Science. And what they showed is that the second largest land-based ice sheet in the world is losing ice twice as fast as scientists had estimated before these new measurements were available. This ice sheet, if completely melted, could raise global sea level by almost 20 feet. That would permanently flood not just New Orleans, but virtually all of America’s major coastal cities.

We also know that we are experiencing a worldwide loss of mountain glaciers, a trend that is accelerating. By mid-century, most mountain glaciers may be gone.

We know that hurricanes are becoming more intense, not just in the Atlantic, which gave us Katrina and Rita, but in all oceans where hurricanes occur.

We know that ecosystems around the world are showing signs of responding to climate change. One study found that 130 species - both plants and animals - have responded to earlier spring warming over the last 30 years. These organisms have changed their timing of flowering, migration and other spring activities. More startling than this, however, climate change is also driving some species to extinction. For instance, in the past 20 years dozens of species of mountain frogs in Central America have disappeared because of a disease that formerly did not occur where they live. Early this year, a paper in the journal Nature revealed that the disease-causing organism, a fungus, has spread to higher elevations as a result of climate warming. This paper not only provides an example of climate change driving species extinct, but also strong scientific evidence that climate change is promoting the spread of diseases to new areas. In the authors' own words, "With climate change promoting infectious disease and eroding biodiversity, the urgency of reducing greenhouse-gas concentrations is now undeniable."

And these are, if I may say this, just the tip of the melting iceberg.

So the bottom line is this: The earth is warming; the impacts—once only predictions—are now upon us and are likely to worsen; and human activity is largely to blame.

U.S. Action on Climate Change

So we have all this science, and we have Americans responding to it by saying that our government needs to do more. How has our government responded? Well, at the state level at least, the response has been encouraging. For example:

Twenty-one states and the District of Columbia have enacted renewable energy mandates requiring utilities to generate a share of their power from renewable sources.

  • Twenty-eight state governments have adopted climate action plans; 15 have programs or policies in place to reduce, sequester or register greenhouse gases; and nine states have statewide targets for reducing their emissions.

Connecticut, I am pleased to say, has done all of these things. And more. As many of you know, Connecticut, along with six other northeastern states has signed onto a regional initiative called RGGI that is aimed at reducing carbon dioxide emissions from power plants in the Northeast. This is the first “cap and trade” program to control these emissions in the United States. It couples a mandatory cap on emissions from the electricity sector with a market-based trading program that will allow companies to achieve their reductions at the lowest possible cost.

So Connecticut is really out in front on this issue—and all of you should be proud to live in a state with leaders who understand the need for climate action.

Among the other states that are taking this issue seriously, I have to mention California.

Like Connecticut, California has established greenhouse gas emissions targets, and they are very ambitious. And that state also has taken steps to begin regulating carbon dioxide emissions from cars and trucks. (a policy that Connecticut will follow if it survives the automakers’ legal challenge)

And then there is New Mexico, a major coal-producing state. NM has established its own targets, and has also announced a partnership with neighboring Arizona to jointly reduce greenhouse gas emissions and address the impacts of climate change in the Southwest.

These are just a few examples of the kinds of things states are doing. Now, you might think one state’s actions cannot possibly affect a global problem like climate change. But consider this: California’s emissions top those of Brazil. Texas comes in ahead of Canada, the UK and Mexico. And Illinois produces more CO2 than the Netherlands. States are a significant part of the climate problem, and many of them, including Connecticut, are showing they can be a significant part of the solution as well.

So what about our national government? To what extent have our leaders in Washington embraced the need for action? Well, I have some good news and some bad news.

First the good news: During the U.S. Senate’s debate on energy legislation last year, senators approved a bipartisan measure calling for a national, mandatory, market-based program to slow, stop and, ultimately, reverse the growth in U.S. greenhouse gas emissions. The legislation was sponsored by senators Domenici and Bingaman, the chair and the ranking Democrat on the Senate Energy Committee. And although it was a nonbinding measure, it marked the first time the Senate has gone on record to support mandatory action on this issue. That is an important achievement – and now Senators Bingaman and Domenici are seeking input on how to create a mandatory climate program that gets real results.

Still in play is the cap and trade legislation proposed by Senators John McCain and Connecticut’s own Joseph Lieberman. And now Senator Dianne Feinstein has joined the issue as well, offering her own version of a cap and trade climate policy. And we are helping others in Congress develop other proposals. So clearly, we’ve seen an up-tick in Congressional interest in this issue. Granted, these proposals may not become law right away, probably not before 2008, but I believe it is only a matter of time before limits on greenhouse gas emissions are in place.

So that’s the good news: people on Capitol Hill, especially in the Senate, are looking at this issue and thinking hard about how to address it.

The bad news is that the White House and leadership of the House of Representatives are strongly opposed to addressing climate change in any significant way. As a result, I do not believe anything substantive is likely to come out of Congress on this issue for some time. I would like to be proved wrong, but it is hard for me to see any leadership on this issue coming from the White House during the remainder of its term.

Despite the President’s famous statement in his State of the Union Address that America is addicted to oil, Washington does not seem truly ready to fight the addiction. The Administration’s budget proposals don’t come anywhere close to providing the shot in the arm we need to accelerate clean energy research in this country. (Again, this is despite the American public’s clear interest in alternative energy solutions.) More importantly, even if the technology programs were properly funded, they simply are not enough.

And this is the problem with what has been happening on this issue to date, whether at the state or the federal level. In addition to being late to start, what we are talking about and doing is simply not enough. As I said, I applaud what many of the states are doing, and I am pleased to see members of Congress beginning to understand the need for action. But we need to remember what this is about.

James Hansen, the NASA scientist who is one of the world’s leading experts on climate change, says we have just 10 years to begin reducing greenhouse gases before global warming reaches what he calls a tipping point; the tipping point, as the phrase implies, is the point from which we may not be able to avert a catastrophe. To forestall a climate crisis, we must stabilize greenhouse gas concentrations in the atmosphere. And what does that mean? According to the Intergovernmental Panel on Climate Change, it means limiting the concentrations to about 550 parts per million –roughly double the pre-industrial level of atmospheric greenhouse gases.

To get to that level, we need to reduce global CO2 emissions by 55 to 85 percent below what is currently projected. Fifty-five to 85 percent. And we need to do this at the same time that energy demand around the world is growing at an unprecedented rate. We need to act now to come up with ways to limit emissions growth without endangering economic growth. And make no mistake: The United States, which is responsible for one-fourth of global emissions, needs to play a leadership role.

And that is going to require a fundamental shift. We need to move from an economy based on traditional burning of fossil fuels to one based on more energy efficiency; increased use of low-carbon energy sources; and the capture and storage of carbon from fossil fuels. This is not something that one piece of legislation, or even one strategy or one approach, will accomplish. We need a comprehensive approach.

An Agenda for Climate Action

In February, the Pew Center released the first comprehensive plan to reduce greenhouse gas emissions in the United States. Our Agenda outlines an ambitious yet practical approach to addressing this issue. It is based on seven years of Pew Center analysis and work with leading businesses and policymakers.

The number-one lesson we have learned from this work: There is no single technology fix, no single policy and no single sector that can solve this problem on its own. For example, addressing emissions from the utility sector is key, but doing only that leaves out about 60 percent of emissions. In the same way, if we adopt policies to limit emissions from transportation and do nothing else, we’re hitting just 30 percent of the problem—which is significant, of course, but it is not enough.

The Pew Center’s Agenda outlines 15 specific recommendations in six overarching areas where the United States must take action. These six areas are: 1) science and technology; 2) market-based programs; 3) sectoral emissions; 4) energy production and use; 5) adaptation; and 6) international engagement.

I want to provide you with a better sense of what our Agenda is about by highlighting some of the recommendations in each of these six areas.

In the area of science and technology research, we call for increased and stable funding to spur technological innovation. Because it is important to spend this money wisely, we suggest the use of a “reverse auction.” Unlike a traditional auction, where buyers bid against each other to purchase an item, a reverse auction allows providers of goods or services—in this case, new, climate-friendly technologies—to compete for a pot of money by offering emissions reductions.

Since 1998, California has used reverse auctions to promote development of renewable energy. The program collects money through a charge on electric power, and solicits bids for renewable projects, with the money going to the bidder that can provide the renewable energy at the cheapest rate. Thus far, there have been 81 successful bids to produce renewable energy through this competitive and cost-effective system.

Second, we believe it is critically important to enact a mandatory cap and trade program that applies to large stationary sources – power-plants and major manufacturing facilities. Our work over the years has shown that market mechanisms such as emissions trading allow companies to reduce emissions in the cheapest, most efficient manner possible.

What a cap and trade system does in essence is send a signal to the market. It tells the market that there is a value in reducing emissions. And it tells inventors and investors that there is profit in creating and deploying climate-friendly technologies. It creates an essential pull for new technologies to enter the market. The push for those technologies, in turn, comes from the funding of innovation, through mechanisms like the reverse auction. And we need both the push and the pull to achieve real and cost-effective results. A cap and trade system coupled with a reverse auction is a great example of a comprehensive approach.

But the fact is that a cap-and-trade system by itself, and particularly at the level that would be politically practical, is not enough. In fact, many of the current proposals for cap-and-trade programs, tend to leave out the transportation sector, which is of course a major source of emissions.

And this is why the Pew Center’s Agenda also calls for sectoral approaches such as transforming the much-maligned Corporate Average Fuel Efficiency (or CAFE) program. CAFE, as you know, sets average fuel efficiency levels for carmakers across their fleets. But the standards have not changed significantly in over 20 years. And, because SUVs and light trucks now make up as much as half of the new-vehicle product mix, the average fuel economy of all the cars and light trucks sold in America—import and domestic— is no better today than it was in the early 1980s. Although NHTSA is currently considering changing the way it classifies different kinds of light trucks, it is unclear what that will translate into as far as actual emission reductions. But I am fairly sure it won’t be enough.

We recommend strengthening and converting the United States’ current fuel economy standards to a set of tradable standards based on greenhouse gas emissions. If you are looking to protect the climate, focusing on emissions rather than fuel efficiency seems more logical. By creating a market for emissions reductions through trading, and at the same time supporting the development of low-emission vehicles and fuels (the push and pull approach)—you can reduce the cost of getting the job done.

Of course, it is not only in the transportation sector where additional action is needed.

Our plan proposes tighter standards for appliance and equipment efficiency, as well as incentives for the manufacture of more climate-friendly products. Similarly, for the building sector, we call for stricter building codes to decrease energy use. We even touch on the role of the agriculture and forestry sectors in keeping carbon out of the atmosphere through climate-friendly practices. Again, all sectors of the economy have a role to play in this, and it is going to take all sectors to achieve the results we need.

But all sectors are not equal when it comes to having a hand in the climate problem and its potential solutions. One sector stands head and shoulders above the rest, and that is, you guessed it, energy. Eighty-percent of US greenhouse gas emissions come from the combustion of fossil fuels. The ways in which we generate, distribute and use energy have a profound impact on our emissions of greenhouse gases—and that is why the Pew Center’s Agenda reserves a special set of recommendations for this all-important sector. Our recommendations cover all of the major energy sources.

Let’s start with coal. And we need to be realists here. Coal is responsible for 50 percent of our nation’s electricity. It is cheap and it is plentiful and I believe (along with many others) that it will continue to play a role in meeting U.S. and global energy needs for years to come. Let’s look for a moment at our current and projected energy mix and needs. If we assume coal will continue to contribute roughly half of U.S. electricity requirements; and you look at the projected growth of energy demand in this country - by 2025 the U.S. will need to grow our coal capacity by 60% - that would mean emissions from U.S. coal burning alone in 2025 would equal 15% of our current global emissions. Globally, the numbers are even more dramatic. China is even more dependent on coal for electricity than the US. It contributes to 75% of their electricity needs, and despite efforts to ramp up generation in gas, renewables and nuclear, the overall share of coal in the mix is unlikely to change significantly. Think about this: China is building new coal power plants at a rate of one plant per week.

So we need to get serious—and I mean very serious—about reducing emissions from coal-fired power plants. First, we need to build the very best, most efficient coal burning power plants possible to reduce emissions per kWh of electricity. And then we have to prove that the carbon dioxide that still is emitted from these plants can be captured and stored (sequestered) in geological formations where it can be kept from entering the atmosphere for centuries or millennia.

We recommend an aggressive program of research, development and demonstration for these technologies. A few random demonstration projects done at a leisurely pace clearly are not enough. We need to build the most efficient plants and we need a concerted public-private effort to demonstrate that capture and sequestration can work, and then we have to insist that it be done.

But dealing with coal alone is not enough. Because capture and storage technologies are not quite ready, we need to work on expanding the role that renewables play in our energy future. We should also concentrate on expanding natural gas supplies and using natural gas more efficiently. And we will need to solve the problems associated with nuclear power. For each energy source, we propose specific measures in areas from R&D to incentives to regulation that can help expand the suite of carbon-friendly technologies that are necessary to put us on a low-carbon path.

It is of course important to understand that none of the things I have talked about can fully prevent all of the potential effects of climate change. In fact, as I mentioned at the start of my remarks, many impacts are already being seen. This is why, at the same time that we are working to reduce emissions in order to minimize the effects of climate change, we also need to develop a national strategy to adapt to those effects. Climate change is happening, and it is going to affect everything from agriculture to public safety and public health. Without a strategy, as well as a system for identifying the early warning signs of climate problems confronting our country, we are going to be caught unprepared.

Finally, the Pew Center’s Agenda, while primarily focused on domestic actions, also calls for greater U.S. participation in international negotiations on this issue. It is obvious now that there is no chance the United States will sign on to the Kyoto Protocol. Kyoto, of course, is the 1997 agreement that sets country-by-country targets for reducing emissions for industrialized countries. However you feel about Kyoto, the fact remains that climate change is a global problem that demands a global solution. It also needs a longer-term solution; Kyoto includes targets only through 2012.

We need to engage every country that is a major source of these emissions, not just the United States but China and India as well. And we need to come up with ways to make the process fair and equitable for all involved.

Finding common ground on global approaches to the climate problem has been the focus of a special Pew Center initiative we launched a couple of years ago and released in Montreal in December. I don’t want to spend a lot of time on it here, but we organized a dialogue-with business and political leaders from the United States, the United Kingdom, Germany, Japan, Australia, China, India, Mexico, Brazil, and other countries. And a key take-away from the group is that we need a more flexible framework than Kyoto, something that allows different countries to take on different types of commitments, all under the umbrella of a common global framework.

Working with us on global approaches are Senators Lugar and Biden, the majority and minority leaders in the Senate Foreign Relations Committee. And I cannot speak highly enough of what these Senators have done. They sent senior staff to participate in our dialogue. They co-sponsored a resolution urging US leadership in the international negotiating process, and are committed to getting a majority of Senators to support it this year. And they expect to hold hearings this year on energy security and climate change.

So those are the recommendations in the Pew Center’s Agenda. Once again, they cover the areas of: 1) science and technology; 2) market-based programs; 3) sectoral emissions; 4) energy production and use; 5) adaptation; and 6) international engagement.

The Role of Business

What I want to emphasize about this agenda is that this isn’t pie-in-the-sky thinking. All of the steps we are recommending are eminently doable. We just need the political will to do them.

And, if we do these things thoughtfully, this transition can actually become a platform for new economic growth, new jobs, new manufacturing and service industries, and new roles for sectors such as agriculture and forestry in our nation’s efforts to protect the climate.

America’s business leaders appear to understand this. They know that a mandatory program to limit and reduce greenhouse gas emissions in the U.S. is inevitable, and they know it is in their best interests to see that the program is designed intelligently and fairly.

That’s why so many of them stood with us at the event in February where we unveiled our Agenda. And why so many companies responded to Senator Bingaman and Domenici’s call for proposals and suggestions to fashion legislation setting mandatory caps on U.S. emissions of greenhouse gases. And that is why last June, five Fortune 500 companies provided testimony on climate to the Science Committee of the House of Representatives. ;

There are two unifying themes in these examples of corporate and investor leadership. First, most corporate leaders know that greenhouse gas regulation is inevitable. Second, they know that properly designed mandatory climate policies are consistent with sound business planning and good corporate governance. As more companies and investors come to this realization, pressure will mount for other companies to take a more responsible stance on the climate issue. And as corporate leadership aligns with activity at the state and international level, pressure will grow for serious policy change at the federal level.

Why? Because these companies want to ensure that the burden of responding to the climate problem is evenly shared across all sectors of the economy. And they also want another thing: they want certainty. Businesses, particularly electric utilities that have to make significant up-front investments in power plants, are saying they need to be able to plan for the future-and they cannot plan effectively without knowing what kind of policies this country is going to adopt to control emissions.

I opened my remarks with some polling data that shows Americans clearly understand the need for action on this issue. And I have concluded with examples of how business leaders, too, are concerned and how they’re beginning to take action. And, when you consider what many of the states are doing to address this issue, you realize that the one place where climate change still hasn’t achieved priority status is in Washington. Yes, we have seen a fair amount of discussion of this issue. And, yes, there are policymakers who take it seriously and who want to shape solutions.

But we need solutions now. We don’t have time to wait. Climate change policy in this country is at a crossroads, and the American public, together with visionary business and state leaders, are pointing us in the direction we need to go.

The sooner we get started by reversing our current course and adopting a serious and comprehensive approach to addressing this problem, the better off and the safer we will be. And the sooner we’ll begin transforming our economy for the realities and the opportunities that lie ahead.

And so, I will leave you today with another bit of polling described by Jay Leno. "According to a survey in this week’s Time magazine, 85% of Americans think global warming is happening. The other 15%" according to Leno, "work for the White House." Thank you very much. I welcome your questions.

Agenda for Climate Action

 

 Agenda for Climate Action cover

Agenda for Climate Action

Prepared by the Pew Center on Global Climate Change
February 2006

Press Release

Download report (pdf)

Download a brochure summarizing the report (pdf)

Foreword

Eileen Claussen, President, Pew Center on Global Climate Change

Over the past seven years, the Pew Center has published more than 60 reports on the science, economics, solutions, and policy options related to global climate change. Over that time, the scientific consensus on this issue has only strengthened, but there is, as yet, no consensus on the appropriate portfolio of policies that are required to address global climate change successfully. This Agenda for Climate Action is C2ES’s attempt to fill that gap. It takes a comprehensive look at a suite of climate, energy, and technology policies that could provide meaningful reductions in greenhouse gas emissions throughout the economy.

This report finds six areas in which the U.S. must take action: (I) science and technology research, (II) market-based emissions management, (III) emissions reductions in key sectors, (IV) energy production and use, (V) adaptation, and (VI) international engagement. In the areas of science and technology research, we call for increased stable funding for both, along with innovative approaches to distribute funds efficiently. We propose a mandatory GHG reporting system, which can form the basis for tracking voluntary reductions, accompanied by a large-source, economy-wide cap-and-trade program for greenhouse gases. This combination of technology investment and market development will provide for the most cost-effective reductions in greenhouse gases, as well as create a market for GHG-reducing technologies.

While these broader efforts are critical, sector-specific actions are also needed. To address emissions from the transportation sector, we propose converting the struggling Corporate Average Fuel Economy (CAFE) program into a more ambitious but tradable GHG standard, along with increased support for low-emission vehicles and fuels. For the industrial sector, we encourage greater outreach and incentives for improvements in process efficiency and the manufacture of low-GHG products. In the agriculture sector, biological sequestration programs in Farm Bill legislation must receive proper funding and prioritization. Because energy is at the heart of this issue, we tackle this sector separately, making recommendations for each major energy source. To enable continued use of coal in a climate-friendly manner, we promote aggressive research and development on carbon separation and capture technologies, development of a regulatory framework for geologic sequestration, and advanced generation coal plants. Natural gas is an important transition fuel, and we support the expansion of natural gas transportation infrastructure and production. We propose extending incentives for renewable fuels and electricity generation, an increased focus on biomass, and federal-level support for renewable credit-trading programs. We also support continued use of nuclear power generation, pending resolution of issues such as safety and waste storage. There are vast opportunities for improving efficiency on an economy-wide basis, so we promote improved efficiency in electricity production (through distributed generation, combined heat and power technologies), in electricity transmission (through test beds for an advanced grid), and during energy use (through building codes, product standards, and manufacturing process improvements).

Because none of these efforts will fully prevent all potential effects of climate change (indeed, many impacts are already being observed), we propose the development of a national adaptation strategy and the funding of early warning systems. Last but not least, while the Agenda focuses on domestic actions, it argues for greater participation by the U.S. in international negotiations to engage all major emitters in a global solution.

Despite the specificity of many of the steps included here, there is still much room for ongoing refinement and elaboration of these recommendations. While we have consulted with many stakeholders in the development of this report, we look forward to building upon the suggestions described here through further outreach and consultation.

This report follows the publication of International Climate Efforts Beyond 2012: Report of the Climate Dialogue at Pocantico, an examination of options for advancing the international climate effort post-2012. Taken together, these two documents offer a promising path forward for the U.S. and the world in tackling global climate change.

Executive Summary

Climate change is one of the most complex issues that the world will face in this century. Concentrations of greenhouse gases in the atmosphere have already reached levels unprecedented for hundreds of thousands of years, causing changes not only in global temperature, but also in observable impacts throughout the world, and these changes are happening more quickly than expected.  The broad consensus of established scientific experts both internationally and domestically is that most of the warming in recent decades can be attributed to human activities.  In addition, the rate and severity of these changes will increase without significant steps to reduce greenhouse gas emissions (GHGs).  Stabilizing greenhouse gas concentrations will require a fundamental shift in our energy system, but this transition will have other benefits as well, including improved competitiveness, security, air quality, public health, and job creation. This transition will not be easy, but it is crucial to begin now. 

This Agenda is the Pew Center's attempt to develop and articulate a responsible course of action for addressing climate change.  It identifies fifteen actions that should be started now, including U.S. domestic reductions and engagement in the international negotiation process.  It includes both broad and specific policies, combining recommendations on technology development, scientific research, energy supply, economy-wide markets, and adaptation with critical steps that can be taken in key sectors. While reductions across sectors and sources of emissions are key, these steps are not likely to happen simultaneously, nor without costs.  However, these recommendations have been designed to be both cost-effective and comprehensive.

Recommendations:

Invest in science and technology research.

1. Ensure a robust research program though the Climate Change Science Program.

2. Offer long-term, stable funds—in the form of a reverse auction—to GHG-related technology research and development.

Establish mandatory limits on greenhouse gas emissions and harness market mechanisms for economy-wide reductions.

3. Create a mandatory GHG reporting system as a basis for an economy-wide emissions trading program.

4. Implement a large-source, economy-wide cap-and-trade program for greenhouse gases.

Stimulate innovation across key economic sectors.

5. Transportation: Convert the Corporate Average Fuel Economy (CAFE) program into strengthened, tradable corporate average emissions standards. Support biofuels, hydrogen, and other low-GHG fuel alternatives.

6. Manufacturing: Provide outreach and incentives to manufacturers for improvements in industrial efficiency and low-GHG technologies, and support the production of low-GHG products.

7. Agriculture: Raise the priority and funding levels for Farm Bill programs and other federal initiatives on carbon sequestration.

Drive the energy system toward greater efficiency, lower-carbon fuels and carbon capture technologies.

8. Coal and Carbon Sequestration: Provide funding for tests of geologic carbon sequestration and for research, development and demonstration (RD&D) projects on separation and capture technologies, in combination with advanced generation coal plants. Establish an appropriate regulatory framework for carbon storage.

9. Natural Gas: Expand natural gas transportation infrastructure and production.

10. Renewables: Significantly “ramp up” renewables for electricity and fuels, including an extension and expansion of the production tax credit, a uniform system for tracking renewable energy credits, and increased emphasis on biomass.

11. Nuclear Power: Provide opportunities for nuclear power to play a continuing role in a future low-carbon electricity sector.

12. Efficient Energy Production and Distribution: Support the development and use of combined heat and power installations, distributed generation technologies, and test beds for an upgraded electricity grid.

13. Efficient Energy Usage: Reduce energy consumption through policies that spur efficiency, including appliance and equipment standards, building R&D and codes, and consumer education.

Begin now to adapt to the inevitable consequences of climate change.

14. Develop a national adaptation strategy through the Climate Change Science Program and Climate Change Technology Program, and fund development of early-warning systems for related threats.

Engage in negotiations to strengthen the international climate effort.

15. Review options for a new or modified agreement to ensure fair and timely action by all major emitting countries, and participate in negotiations to establish binding climate commitments consistent with domestic interests.

These fifteen recommendations are not the only means of achieving a lower-carbon future, but taken together, they would chart a climate-friendly path for the U.S.. Putting the Agenda into practice will take political will and policy action. All recommendations require government leadership, private sector commitment and time. Nonetheless, the details of specific recommendations in this Agenda are less critical than the compelling need to get started. Further delay will only make the challenge before us more daunting and costly.

Business Support

Agenda for Climate Action
Report Release
February 8, 2006
National Press Club, Washington, DC


Remarks made by business representatives at the release:

David Hone
Group Climate Change Adviser
Shell International Limited (pdf)

Melissa Lavinson
Director for Federal, Governmental and Regulatory Relations
PG&E Corporation (pdf)

Bill Gerwing
Western Hemisphere Health, Safety, Security, and Environment Director
BP (pdf)

John Stowell
Vice President of Federal Affairs and Environmental Safety
Cinergy (pdf)

Ruksana Mirza
Vice President, Environmental Health and Safety
Holcim (US) Inc. (pdf)

Tom Catania
Vice President, Government Relations
Whirlpool Corporation (pdf)

Supporting statements: Agenda for Climate Action

The Pew Agenda is an example of the kind of big picture, integrated thinking that is needed to tackle the climate issue.  We're pleased that the Agenda makes the point that climate solutions should be market based while covering all parts of the economy and resolving regulatory uncertainty.  These are all vital as the utility industry prepares to build the next generation of power plants needed by our growing economy.

James E. Rogers, Chairman, President, and Chief Executive Officer
Cinergy Corp.


The changes needed in our energy infrastructure to meet future demand and respond to climate change will not happen by chance - a clear, long term framework will give business the necessary incentive and confidence to invest further.

John D. Hofmeister, President and US Country Chair
Shell Oil Company


Holcim is pleased with the leadership that the Pew Center has taken with regard to greenhouse gas reduction policies and the depth of research that comprises the foundation of this report. Importantly, the Pew Center recognizes the necessity of market-based solutions and that various sector needs must be taken into consideration if we are to have consensus in what must be done to contain and ultimately reduce the generation of greenhouse gases.

Patrick Dolberg, President & Chief Executive Officer
Holcim (US) Inc.


Through its association with the Pew Center, Alcan has identified another avenue through which to actively address climate change and its effects on the long-term sustainability of the Company. This report sends a clear message, calling on all stakeholders to broaden their investment in tackling the economic, social, and environmental issues that climate change presents.”

Daniel Gagnier, Senior Vice President, Corporate and External Affairs
Alcan Inc.


Intel supports Pew's efforts to advance the national discussion on climate change by proposing options that merit careful consideration. Intel agrees that climate change is a serious issue, and has been actively working to mitigate its own climate impact through aggressive programs to reduce energy consumption and emissions of global warming compounds.

Dane Parker, General Manager of Environmental Health and Safety
Intel

0

Press Release: Agenda for Climate Action

Press Release
February 8, 2006

Contact: Katie Mandes, (703) 516-0606

PEW CENTER ON GLOBAL CLIMATE CHANGE RELEASES FIRST COMPREHENSIVE APPROACH TO CLIMATE CHANGE

All Sectors Must Share in Solution

WASHINGTON, D.C. – The Pew Center on Global Climate Change released the first comprehensive plan to reduce greenhouse gas emissions in the United States.  The Agenda for Climate Action identifies both broad and specific policies, combining recommendations on economy-wide mandatory emissions cuts, technology development, scientific research, energy supply, and adaptation with critical steps that can be taken in key sectors.  The report is the culmination of a two-year effort that articulates a pragmatic course of action across all areas of the economy.  

The report calls for a combination of technology and policy and urges action in six key areas:  (1) science and technology, (2) market-based programs, (3) sectoral emissions, (4) energy production and use, (5) adaptation, and (6) international engagement.  Within these six areas, the Agenda outlines fifteen specific recommendations that should be started now, including U.S. domestic reductions and engagement in the international negotiation process.  All the recommendations are capable of implementation in the near-term. 

The report concludes that there is no single technology fix, no single policy instrument, and no single sector that can solve this problem on its own.  Rather, a combination of technology investment and market development will provide for the most cost-effective reductions in greenhouse gases, and will create a thriving market for GHG-reducing technologies.  To address climate change without placing the burden on any one group, the report urges actions throughout the economy. 

“Some believe the answer to addressing climate change lies in technology incentives.  Others say limiting emissions is the only answer.  We need both,” said Eileen Claussen, President of the Pew Center.

Emissions in the United States continue to rise at an alarming rate.  U.S. carbon dioxide emissions have grown by more than 18% since 1990, and the Department of Energy now projects that they will increase by another 37% by 2030. 

Joining the Pew Center at the announcement were representatives from the energy and manufacturing sectors.  Speaking at the release were:  David Hone, Group Climate Change Adviser, Shell International Limited; Melissa Lavinson, Director, Federal Environmental Affairs and Corporate Responsibility, PG&E Corporation; Bill Gerwing, Western Hemisphere Health, Safety, Security, and Environment Director, BP; John Stowell, Vice President, Environmental Strategy, Federal Affairs and Sustainability, Cinergy Corp., Ruksana Mirza, Vice President, Environmental Affairs, Holcim (US) Inc.; and Tom Catania, Vice President, Government Relations, Whirlpool Corporation.

Recommendations:

While actions are needed across all sectors, some steps will have a more significant, far-reaching impact on emissions than others and must be undertaken as soon as possible. 

  • A program to cap emissions from large sources and allow for emissions trading will send a signal to curb releases of greenhouse gases while promoting a market for new technologies.
  • Transportation is responsible for roughly one-third of our greenhouse gas emissions, and this report addresses this sector through tradable emissions standards for vehicles.
  • Because energy is at the core of the climate change problem, the report makes several recommendations in this area: calling for increased efficiency in buildings and products, as well as in electricity generation and distribution.  Incentives and a nationwide platform to track and trade renewable energy credits are recommended to support increased renewable power.  In recognition of the key role that coal plays in U.S. energy supply, the report calls for the capture and sequestration of carbon that results from burning coal. Nuclear power currently provides a substantial amount of non-emitting electricity, and is therefore important to keep in the generation mix. The report recommends support for advanced generation of nuclear power, while noting that issues such as safety and waste disposal must also be addressed.
  • While most of the recommendations focus on mitigation efforts, the report acknowledges that some impacts are inevitable and are already being seen. As a result, it proposes development of a national adaptation strategy to plan for a climate-changing world. 
  • Finally, despite the importance of efforts by individual countries on this issue, climate change cannot be addressed without engagement of the broader international community.  The report recommends that the U.S. participate in international negotiations aimed at curbing global greenhouse gas emissions by all major emitting countries.

Other recommendations include: long-term stable research funding, incentives for low-carbon fuels and consumer products, funding for biological sequestration, expanding the natural gas supply and distribution network, and a mandatory greenhouse gas reporting program that can provide a stepping stone to economy-wide emissions trading. 

The full text of this and other Pew Center reports is available at http://www.c2es.org.  

###

The Pew Center was established in May 1998 by The Pew Charitable Trusts, one of the United States’ largest philanthropies and an influential voice in efforts to improve the quality of the environment.  The Pew Center is an independent, nonprofit, and non-partisan organization dedicated to providing credible information, straight answers, and innovative solutions in the effort to address global climate change.  The Pew Center is led by Eileen Claussen, the former U.S. Assistant Secretary of State for Oceans and International Environmental and Scientific Affairs.

Global Warming Facts and Figures

These facts and figures are divided into three sections:

  1. U.S. Emissions
  2. International Emissions
  3. Land-Ocean Surface Temperatures
    and other information on our Basics page
  4. Main Greenhouse Gases

These sections explain the scientific evidence for human impacts on the climate system, specifically global warming.

Each section below contains several figures. Click on the section's heading or image to view all.

 

U.S. Emissions

International Emissions

Land-Ocean Surface Temperatures
and other information on our Basics page

Main Greenhouse Gases

 

Global warming facts and figures to explain the scientific evidence for human impacts on the climate system.

Political Climate Change

Full Article (PDF)

by Truman Semans, Director for Markets and Business Strategy at the Pew Center--Appeared in Petroleum Economist, September 2005
0

Global Warming and Extreme Weather Events

Full Article (PDF)

by Benjamin Preston-- Appeared in Catastrophe Risk Management, Spring 2005
0

Press Release: New Report Examines Impacts of Storing Carbon

Press Release           
For Immediate Release:  January 19, 2005             

Contact:  Katie Mandes
703.516-0606 

CLIMATE SOLUTIONS AND FORESTS
New report examines the economic and climate impacts of storing carbon in trees

Washington, DC — Cost-effective climate change policies should include storage of carbon dioxide (CO2) in U.S. forests, according to a new report from the Pew Center on Global Climate Change. 

“Climate change is the major global environmental challenge of our time and in order to deal with it in the most cost-effective way, we need to consider the full range of solutions – and that includes carbon storage in forests,” said Eileen Claussen, President of the Pew Center on Global Climate Change.  “If we ignore the potential for forest-based sequestration, any projection of the costs and feasibility of addressing climate change is going to be overly pessimistic and wrong.”

Most analyses of the climate issue have tended to focus on the implications of reducing emissions of carbon dioxide and other greenhouse gases from key industrial and transportation sources. Less attention is paid to the potential for storing (or “sequestering”) carbon in forests and other ecosystems.  Both emissions reduction and carbon sequestration are important strategies for addressing climate change.

The Pew Center report, The Cost of U.S. Forest-based Carbon Sequestration, investigates the potential for incorporating land-use changes into climate policy.  Authored by economists Robert Stavins of Harvard University and Kenneth Richards of Indiana University, the Pew Center report looks at the true “opportunity costs” of using land for sequestration, in contrast with other productive uses. The report also examines the many factors that drive the economics of storing carbon in forests over long periods of time.

Among the authors’ key conclusions: The estimated cost of sequestering up to 500 million tons of carbon per year—an amount that would offset up to one-third of current annual U.S. carbon emissions—ranges from $30 to $90 per ton. On a per-ton basis, this is comparable to the cost estimated for other options for addressing climate change, including fuel switching and energy efficiency.

A sequestration program on the scale envisioned by the authors would involve large expanses of land and significant up-front investment. As a result, implementation would require careful attention to program design and a phased approach over a number of years. Nevertheless, the report offers new evidence that sequestration can and should play an important role in the United States’ response to climate change.

“This report shows that large-scale forest-based sequestration can be a cost-effective tool which should be considered seriously by policymakers,” said the Pew Center's Claussen.

The full text of this and other Pew Center reports is available at http://www.c2es.org.

###

The Pew Center was established in May 1998 by The Pew Charitable Trusts, one of the United States’ largest philanthropies and an influential voice in efforts to improve the quality of the environment. The Pew Center is an independent, nonprofit, and non-partisan organization dedicated to providing credible information, straight answers, and innovative solutions in the effort to address global climate change. The Pew Center is led by Eileen Claussen, the former U.S. Assistant Secretary of State for Oceans and International Environmental and Scientific Affairs.

Climate Change: Beyond A Sideways Approach

CLIMATE CHANGE: BEYOND A SIDEWAYS APPROACH

SPEECH BY EILEEN CLAUSSEN
PRESIDENT, PEW CENTER ON GLOBAL CLIMATE CHANGE

DONALD BREN SCHOOL OF ENVIRONMENTAL SCIENCE
AND MANAGEMENT- UNIVERSITY OF CALIFORNIA, SANTA BARBARA

JANUARY 14, 2005


Thank you.  I am delighted to be here – and I have to say it was awfully nice of the weather to clear up for my arrival. 

Of course, I am not here to talk about the weather.  I am here to talk about the climate.  And the difference, as we all know, is that climate is what you expect.  Weather is what you get.  And California has certainly gotten more than it expected or deserved these last few weeks. 

I am sure some of you saw the movie, The Day After Tomorrow, and it is hard not to think about it given the recent weather you’ve been having.  This is the film that dramatized the effects of climate change by releasing tornadoes in downtown Los Angeles and flooding all of Manhattan.  People called it left-wing propaganda, but I remember watching the movie and wondering why only Blue states were getting hit.

And then of course we have the new Michael Crichton book that you have probably heard about.  The book, which is climbing the bestseller lists as we speak, tells a fictional tale of how climate change itself is a fiction created by overzealous environmentalists so that they can enact draconian regulations on big business. 

The book is called “State of Fear,” and my only fear is that people will take seriously its absolutely wrongheaded portrayal of the problem of climate change. 

I hope all of you will join me in reminding people that Mr. Crichton’s specialty is fiction – even if he does include all sorts of graphs and charts in the current book to make it seem like a scientific tract.  This is the man who wrote such fantastical books as Jurassic Park, and it seems to me he has been hanging out with too many dinosaurs – people who are mired in the past and who simply cannot and will not accept the broad scientific consensus that we have a significant problem on our hands, and that there are practical and economically sound ways to tackle it. 

The point is– whether we are talking about the movie or the book:  They are both fiction.

In contrast to the book’s sensationalistic tone and style, your school’s emphasis on rigorous, interdisciplinary approaches to environmental problem-solving is something that is desperately needed in today’s world.  With so many complex and urgent environmental issues on the agenda at the local, national and international levels, your work here is essential.  And I applaud your interest in these issues and your commitment to solutions.

At the Pew Center on Global Climate Change, we are committed to solutions, too.  And today, I would like to talk for a little bit about some of the potential solutions to the problem of climate change.  More specifically, I want to talk about the nexus of technology and public policy – in other words, what policies do we need in order to unleash the global technological revolution that is necessary to protect the climate? 

I understand there is a hit movie in theaters right now that was filmed in the wine country around here. The movie is called Sideways – and, unfortunately, this is a title that could just as easily apply to current U.S. policy on climate change.  But in saying we are moving sideways, even that may be giving us too much credit.  Perhaps Backwards would be more appropriate. 

Clearly, we can do better.  And today I want to talk about how.  More specifically, I want to talk about a plan that the Pew Center is developing for U.S. action on the climate issue.  We call it our Agenda – and it is something we have been working on in concert with business and government leaders and others to lay out a responsible and practical policy course for the United States for the years to come.

But, before I talk about that, I want to talk briefly about what is at stake here.  And I want to paint a clearer picture of the problem we are trying to solve, the problem we must solve—that is, of course, global climate change. 

Just last month, the World Meteorological Organization reported that 2004 was the fourth hottest year on record – and that the last four years were among the top five. Of even greater concern was the news we learned in November about the arctic region.  This is the canary in the coal mine of climate change, the place where researchers have always said that the effects of this global problem will hit early and hard. 

And in November, we learned just how hard.  The report of the Arctic Climate Impact Assessment showed that the Arctic region is indeed undergoing dramatic and alarming changes.  The reason: It’s warming much more rapidly than previously known, at nearly twice the rate of the rest of the globe. 

And it’s important to remember that this isn’t a random, out-of-left-field report.  It is the result of an unprecedented, four-year scientific study of the region conducted by an international team of 300 scientists.  And its conclusions should be a wake-up call for all nations. 

According to the report, at least half the summer sea ice in the Arctic is projected to melt by the end of this century, along with a significant portion of the Greenland Ice Sheet.  The Arctic region is projected to warm by an additional 7 to 13 degrees Fahrenheit by 2100.  These changes will have major global impacts, contributing to sea-level rise and even intensifying global warming as the disappearance of Arctic ice masses means that more incoming solar radiation will be absorbed at the Earth’s surface instead of being reflected back. 

This is scary stuff.  And, the fact is, we don’t have to travel to the Arctic to see that climate change is already being observed, even if the impacts in that region may be more pronounced and are occurring at a faster rate.  Also in November, the Pew Center released a report showing some of the closer-to-home effects of climate change – effects right here in the United States.  Right now. 

For example, we are seeing a long-term trend toward an earlier spring, with earlier flowering and reproduction of plant and bird species. Butterflies here on the U.S. west coast are moving north and to higher altitudes in search of tolerable climate conditions, with some populations disappearing altogether from the southern end of their ranges.   And this is only the beginning. In addition to their potential to lead to future declines in the diversity of U.S. wildlife, these ecological changes are indicators that global warming is already upon us and that adverse effects to other systems, and ultimately our economy, are just around the corner. 

With warming for the next century projected to be two to ten times greater than the last, we’re heading toward a fundamental and potentially irreversible disruption of our ecology and natural systems, both in this country and around the world.

So what can we do?  Well, at this point, we have to accept that some climate change already is built into the system – indeed, it is already happening, as I have said.  But we do have the power to limit the scope and severity of climate change.  And what we need to do is stabilize greenhouse gases in our atmosphere at a level that will keep this problem from becoming a global crisis. 

According to the Intergovernmental Panel on Climate Change, stabilization means shooting for the magic number of 550 parts per million – that would be roughly double the pre-industrial level of atmospheric greenhouse gases. 

But to get to that level, we need to reduce global CO2 emissions by 55 to 85 percent below what is currently projected under a “business-as-usual” scenario.  Fifty-five to 85 percent.  Making this challenge even more daunting, energy demand around the world is growing at a breakneck pace.  We need to act now to come up with ways to keep global economies growing while curbing the growth in greenhouse gas emissions around the world.  And make no mistake: The United States, which is responsible for one-fourth of global emissions, needs to take the lead.

Over the past year, as I have said, the Pew Center has been working to develop a comprehensive plan for U.S. action on this issue.  This Agenda is our attempt to develop and articulate a responsible course for addressing climate change. 

It is built on six years of Pew Center analysis and experience with leading businesses, and through dialogue with international leaders and experts.  And what we recommend in the Agenda is that the U.S. develop an Integrated National Climate Change Strategy.  That means a strategy that combines technology development with wide-ranging policies on issues from mitigation and science to adaptation. 

This last point, about adaptation, is a crucial part of what we have to do, because even if we push forward with an ambitious strategy to reduce greenhouse gas emissions, we’re already locked in to future changes in the global climate.  There is no way around it.  And these future changes will pose many challenges to ecosystems and natural resources, as well as human health and national economies.  We need to plan now for these changes so that our society and others are able to adapt. 

But adapting, of course, is not enough.  We also need to take serious action to limit the extent of climate change by reducing our emissions.  More than anything else, that will require a global technology revolution – and we need policies to make that revolution happen. 

While it’s true that technology normally advances over time on its own, it does not always advance in the right direction.  Also, we plainly do not have time to wait.  The challenge before us requires a much more deliberate, enunciated effort to develop policies that will help push and pull climate-friendly technologies to the market.  We need a guiding vision on the order of putting a person on the moon or developing a cure for cancer.  And we need to look at the full range of policy approaches that will get us where we need to be – from market incentives and public-private partnerships to a range of R&D efforts focusing on everything from basic research to deployment.

Perhaps the best way to look at the technology and policy challenge we face is on a sector-by-sector basis.  From manufacturing and electricity to buildings, agriculture, forestry and transportation, all sectors of the economy have important parts to play in reducing greenhouse gas emissions.  Let me talk briefly about just two: transportation and electricity. 

The transportation sector is responsible for more than a third of our greenhouse gas emissions, and a quarter of U.S. energy consumption. To reduce these emissions, the Pew Center's Agenda identifies a range of specific policies-all aimed at speeding the development and deployment of new technologies.  And what we need to do is focus on both short-term technologies such as hybrid gas-electric vehicles, as well as longer-term technologies such as hydrogen.  
 
Looking first at the short term, we can do a lot more on the issue of hybrids.  This is, in fact, a classic case of how smart policy can make a difference.  Yes, hybrid vehicles are selling.  But, despite their popularity, there is no way they will represent more than a small fraction of U.S. vehicle sales without government stepping in and creating a bigger market.  What can government do?  Well, we can do a lot more to step up consumer incentives for buying these low greenhouse gas emitting vehicles - and it is not just hybrids I am talking about but clean-diesel vehicles as well. 
 
We can also remove incentives in the law for purchasing inefficient vehicles such as SUVs - it is frankly hard to believe these incentives exist, given the energy and climate challenges we face.  And, last but not least, government can and should take steps to boost public-sector procurement of climate-friendly vehicles.  The goal is to create and expand the market - and government can help do that with its own purchases. 
 
Among the longer-term transportation technologies we need to be looking at are hydrogen, biofuels, and all-electric cars and trucks.  But every one of these technologies faces substantial barriers that the private sector is unlikely  to be able to resolve on its own.  We need to ramp up funding for research, design and deployment.  Just as important, we need demonstration programs.  Everybody talks about a hydrogen economy, but you need a hydrogen infrastructure to make it work.  And the government needs to work with industry to come up with demonstrations that will show what's feasible and practical - and how to do it right.  For example, it is absolutely essential that we find environmentally friendly ways of producing hydrogen - because if we merely use fossil fuels to do it, the climate problem does not improve; it actually gets worse. 
 
I have talked a lot about cars, but we need to look at other forms of transportation, too.   Air, rail, marine transportation, road freight - all of these are a part of the problem, and all of them must be a part of the solution.  In the Pew Center Agenda, we talk about the need for government to work with the International Civil Aviation Organization to adopt policies aimed at boosting the fuel efficiency of aircraft.  The bottom line is that there are countless ways to reduce emissions from this vital and growing sector.  Our challenge is to adopt policies that will ensure that those reductions happen sooner rather than later - when the damage may already be done.

People in California know what needs to happen.  Your state is on the verge of establishing tough but achievable standards for greenhouse gas emissions from cars.  You would be the first state to do this – and, if it happens, you’ll be charting a productive path forward for the rest of the country.  Because the fact is we need national standards like those proposed for California.  And, in the Pew Center Agenda, we recommend converting the United States' current fuel economy standards to a set of tradable standards based on greenhouse gas emissions.  If you are looking to protect the climate, focusing on emissions is the way to go.

Another sector where we can and must achieve significant progress is electricity, which is responsible for almost 40 percent of U.S. emissions.  And here I want to start by talking about coal.  In 2003, coal provided 51 percent of U.S. electricity.  Worldwide, it is the most abundant and widely distributed fossil fuel.  Given current rates of production and use, we have 200 years of reserve supply.  Whether you like it or not, coal is going to remain a major part of the energy mix for decades to come. 

And so our challenge is twofold: we need to come up with better, cleaner ways to burn coal; and we also need to do everything in our power to figure out how to capture and store the carbon that is produced when we do burn it.  There are technologies being developed that hold promise on both of these counts.  But, once again, these technologies will go nowhere fast if we don’t light a fire under them, so to speak, with government R&D and other policies.  We need tests to find out the practicality of geologic storage of carbon.  We need demonstrations so we can understand the ins and outs of CO2 injection underground.  We also need to build demonstration plants so we can learn more about coal gasification, which holds the promise of allowing us to burn coal with dramatically reduced carbon emissions.  

All of these are smart and necessary investments – not just for climate reasons but also because they can place the United States in a leadership position around the world so we can then export these technologies to other countries with significant coal resources, such as India and China. 

So that’s the story with coal.  But what about other energy technologies?  What about combined heat and power?  This is when you capture and use the waste heat generated along with electricity.  Want to know the overall efficiency of the U.S. electricity system – what we put in vs. what we get out? It’s 30 to 33 percent of input energy; that level has remained constant since the 1970s.  This is inexcusable when you consider that combined heat and power systems can boost efficiency to upwards of 80 percent.  Right now, these systems account for just 8 percent of U.S. energy supply, compared to 40 percent in Europe.  What policy steps can we take to promote combined heat and power?  Well, we can start by regulating utilities based on total energy output.  A lot of these are just common-sense solutions. 

Another promising energy technology is distributed generation, or DG.  This is when you  generate electricity close to the point of use. With distributed generation, you can reduce  CO2 emissions in a number of ways.  In fact, a major benefit of this technology is that you avoid so-called transmission and distribution losses; when electricity is moved over long distances, 7 to 8 percent of it is lost along the way.   With distributed generation, you can also use waste heat for combined heat and power in ways that you cannot in a large, centralized power station. So it can be more efficient in that way too.  But we need policies to make distributed generation more feasible -- for example, by allowing people to sell excess power back to the grid at a fair price.

Now, what about renewables?  If you are talking about climate-friendly sources of energy, you have to talk about renewables – wind, solar, hydropower, geothermal and more.  In the past, these technologies have cost significantly more than fossil fuels for the same energy output.  But over time we have adopted policies at the national, state and local levels that promote renewables – tax breaks, consumer incentives, portfolio standards that require utilities to generate a set share of their power from these sources.  California’s aggressive deployment policies in the 1980s helped bring the cost of wind power down to where it is today – close to the cost of fossil fuel generation in some markets.  Yet, the lack of policy leadership in the U.S. meant that we lost our leadership position in the wind field to Europe. 

So it is policy that has made these technologies more competitive, but policy needs to do more.  We need to do things like extending the wind production tax credit, creating renewable portfolio standards at the state, regional and/or national level, and investing more in research and development.  Given the energy security challenges we face in this country, not to mention the climate challenges, developing and deploying renewables should be at the top of our national agenda. 

Burning coal in clean ways.  Safely storing carbon.  Investing in combined heat and power and distributed generation.  And making renewables an integral part of our national energy mix.  These are critical energy challenges for the future – and they are not the only ones.  At the Pew Center, we have always been careful to remain “technologically neutral” – we will throw out the welcome mat for any and all technologies that can be part of the climate solution.  And, in our Agenda, we address the need for policies to encourage the development and deployment of everything from advanced nuclear power to new energy-efficiency technologies.  This problem is too big for any one solution. 

We need to look at an array of technologies, and at an array of policies as well.  We need strong R&D policies, government standards and codes, public infrastructure investments, public education programs, public-private partnerships and more.  And we also need to look at broader, technology-neutral policies as well – policies that can encourage action across all sectors of the economy.  Here I am talking specifically about the policy known as “cap and trade.” 

Cap-and-trade is the approach taken in the Climate Stewardship Act introduced last year by Senators Joseph Lieberman and John McCain.  Their bill attracted the support of 43 U.S. senators and prompted the first serious debate in Congress about exactly what we need to be doing to respond to the problem of climate change.

The reason cap-and-trade works is that it enables companies to reduce emissions as cheaply as possible.  We all know the example of how trading has worked to achieve cost-effective reductions in emissions of the pollutants that cause acid rain.  In fact, it was because of the United States’ successful use of trading to reduce sulfur emissions that our country insisted that trading be a central element of the Kyoto Protocol.  And now, inspired by Kyoto, the European Union is on the verge of launching the broadest emissions trading system ever established.

What’s more, right here in the United States, nine Northeastern governors, led by New York Governor George Pataki, are developing a multi-state regional “cap-and-trade” initiative aimed at reducing carbon dioxide emissions from power plants.  This effort is proceeding well, and we expect them to complete their work by this spring, with agreement on a model rule.

Now, it will probably be some time before we establish a national, economy-wide cap-and-trade system in the United States—the political support for it is not there.  But what might be possible is a series of interlinked trading systems – the east coast with Europe and perhaps with Canada and the west coast as well. Such a “bottom-up” system could be robust enough both to achieve some environmental benefit and to keep costs down.  And it would be a valuable learning experience for both sides on this issue, hopefully one that would show that taking action to protect the climate is both practical and affordable.

Of course, cap-and-trade is not the only broad policy that we need to think about.  We also need a climate-conscious energy policy for the United States.  In Great Britain, the government has developed an energy blueprint for the next 50 years that makes climate change a key driver of that country’s energy policy, along with price and security of supply.  The United States would be wise to follow suit. 

I have tried in these remarks to talk about what we need to do here at home in order to approach the climate issue in a serious way.  We need a robust, climate-friendly energy policy.  Incentives and requirements for clean technologies.  A cap-and-trade program to reduce emissions at the lowest cost.  But it is important to remember that we need to engage on this issue at the international level too.  Climate change is a global problem.  Even if we were to get dead serious about reducing our emissions tomorrow, we won’t get where we need to be unless all countries become a part of the solution.

In December, as many of you know, delegates from the United States joined representatives of other nations at a climate meeting in Buenos Aires.  The ostensible purpose of the meeting was to tie up any loose ends that remained before the Kyoto Protocol goes into force in February.  The Protocol, of course, is the international agreement that commits all of its signatory countries to specific targets for reducing their greenhouse gas emissions before 2012.  The Buenos Aires meeting also, it was assumed, would begin to lay the groundwork for the next steps in the international climate effort – in other words, what happens after 2012?

The only problem with the latter assumption is that the United States, which is not even a party to the Protocol, was opposed to any discussion of the future.  In a truly Orwellian quote, the lead U.S. negotiator at the meeting was heard to say, “We need to absorb and analyze lessons learned before committing to new actions.”  End quote.  New actions?  I didn’t know that we had committed to any old actions.  And it is hard to learn any lessons when you’re doing next to nothing. 

We might as well have had Michael Crichton as the head of our negotiating team.  At least he would have made it more interesting. 

In any case, the events in Buenos Aires underscore how far the U.S. has strayed since 1992, when President George H.W. Bush signed the United Nations Framework Convention on Climate Change.  This is the treaty where the nations of the world acknowledged that climate change was a problem and pledged to act – voluntarily, I might add – to reduce their emissions.  Even during the Clinton administration, despite signing the Kyoto Protocol, we clearly were not willing to own up to our global responsibility on this issue.

Climate change requires that we act at both the international and the national levels, and my goal today has been to give you some ideas and examples of the kinds of things we need to do.  Now, at this point I could wrap up by remarks by comparing what we need to do with what is actually happening.  And, I would start by talking about the relatively low level of investment in this issue on the part of the federal government.  I would then have to mention the Administration’s goal of growing our emissions.  And I would come back again to our reluctance to enter the debate on how we might move forward on this issue globally.  But I don’t want to leave you depressed, particularly given the fact that you have had such frightening weather these last few weeks. 

Instead, I will leave you with a look on the bright side of this issue.  Because, despite everything else, we have seen a few signs of progress in the past year.  One of these, of course, is the fact that the Kyoto Protocol is ready to enter into force in February – no matter what you want to say about it, this is an historic achievement.  And, in a related development that I already mentioned, we have seen the launch of the EU trading system for carbon dioxide – it is another historic achievement and, hopefully, the first of many such trading systems around the world. 

Next, I want to pay tribute to British Prime Minister Tony Blair, who has spent a good part of the past year touting climate change as one of two key issues he intends to work on as president of both the EU and G-8 group of industrialized nations. 

Yet another thing to celebrate is the work of many U.S. states to get a handle on this issue, even despite the lack of action in Washington.  I mentioned the work of the Northeastern governors on cap-and-trade.  And I also talked about what’s happening here in California with regard to motor vehicle emissions.  And there are many more stories from the states about people stepping up to their responsibility to act.  U.S. states are a large source of greenhouse gas emissions – California’s exceed those of Brazil.  And, while national policies are essential, we also need the states to do their part.  

Last but not least, I want to celebrate what is happening in many corners of the business community to address this problem.  Many of the companies we work with at the Pew Center are adopting voluntary targets for reducing their greenhouse gas emissions.  And, not only that, they are taking action to meet their targets by investing in new technologies, increasing efficiency, and developing energy-saving products, clean fuels, biomass energy, and more.

In closing, let me say that the forecast for the future needn’t be gloomy.  A lot is happening to address the climate change problem.  But we need to do a lot more.  And I encourage all of you to do what’s needed to make sure your state remains a leader in addressing this issue in the years ahead.  We need to show that solutions are within our grasp, that smart, forward-thinking policies can drive the development and deployment of new, low-carbon technologies, and that progress is possible. 

Climate change is the most important global environmental challenge we will face in the years ahead.  Don’t let anyone tell you it’s fiction.  You know better.  And it is going to be people like you who come up with the solutions we need. 

Thank you very much. 

Syndicate content