Science

Regional Impacts of Climate Change: Four Case Studies in the United States

Regional Impacts Cover

Regional Impacts of Climate Change: Four Case Studies in the United States

Prepared for the Pew Center on Global Climate Change
December 2007 

By:
Kristie L. Ebi, ESS
Gerald A. Meehl, National Center for Atmospheric Research
Dominique Bachelet, et al., Oregon State University
Robert R. Twilley, Louisiana State University
Donald F. Boesch, et al., University of Maryland Center for Environmental Science

Press Release

Download full report (pdf) or individual case studies:

Foreword

 

Foreword Eileen Claussen, President, Pew Center on Global Climate Change

In 2007, the science of climate change achieved an unfortunate milestone: the Intergovernmental Panel on Climate Change reached a consensus position that human-induced global warming is already causing physical and biological impacts worldwide. The most recent scientific work demonstrates that changes in the climate system are occurring in the patterns that scientists had predicted, but the observed changes are happening earlier and faster than expected—again, unfortunate. Although serious reductions in manmade greenhouse gas emissions must be undertaken to reduce the extent of future impacts, climate change is already here and some impacts are clearly unavoidable. It is imperative, therefore, that we take stock of current and projected impacts so that we may begin to prepare for a future unlike the past we have known. 

The Pew Center has published a dozen previous reports on the environmental effects of climate change in various sectors across the United States. However, because climate impacts occur locally and can take many different forms in different places, Regional Impacts of Climate Change:Four Case Studies in the United States examines impacts of particular interest to different regions of the country. Although sections of the report examine different aspects of current and projected impacts, a look across the sections reveals common issues that decision makers and planners are likely to face in learning to cope with climate change. 

Kristie Ebi and Gerald Meehl find that Midwestern cities are very likely to experience more frequent, longer, and hotter heatwaves. According to Dominique Bachelet and her coauthors, wildfires are likely to increase in the West, continuing a dramatic trend already in progress. Robert Twilley explains that Gulf Coast wetlands provide critical ecosystems services to humanity, but sustaining these already fragile ecosystems will be increasingly difficult in the face of climate change. Finally, Donald Boesch and his colleagues warn that the Chesapeake Bay may respond to climate change with more frequent and larger low-oxygen “dead zone” events that damage fisheries and diminish tourist appeal. These authors are leading thinkers and practitioners in their respective fields and provide authoritative views on what must be done to adapt to climate change and diminish the threats to our environmental support systems. 

A key theme emerges from these four case studies: pre-existing problems caused by human activities are exacerbated by climate change, itself mostly a human-induced phenomenon. Fortunately, manmade problems are amenable to manmade solutions. Climate change cannot be stopped entirely, but it can be limited significantly through national and international action to reduce the amount of greenhouse gases emitted to the atmosphere over the next several decades and thereafter, thus limiting climate change impacts. Managing those impacts requires that we adapt other human activities so that crucial resources, such as Gulf Coast wetlands or public emergency systems, continue to function effectively. The papers in this volume offer insights into how we can adapt to a variety of major impacts that we can expect to face now and in decades to come. 

This report benefited from technical assistance, editing, and peer review. The Pew Center and the authors thank Joel Smith for project coordination as well as Ray Drapek, Anthony Janetos, BonnieNevel, James Morris, Steven Running, Don Scavia, Scott Sheridan, Peter Stott, Elizabeth Strange,Margaret Torn, Eugene Turner, John Wells, and Gary Yohe. 

Introduction

 

The Pew Center on Global Climate Change has published many reports that address the impacts of climate change in a number of sectors and ecosystems across the United States, including agriculture, forests, coastal resources, water resources, and others. Results of previous studies in this series are summarized in a synthesis report (Smith, 2004).  

But differences in climate, topography, land use, and infrastructure result in different climate change impacts at the regional and local scales. As a complement to earlier the Pew Center reports focusing on the United States in general, this report presents four case studies of specific climate change impacts in different regions of the country:

  • The Heat is On: Climate Change & Heatwaves in the Midwest by Kristie L. Ebi of ESS and Gerald A. Meehl of the National Center for Atmospheric Research;
  • The Importance of Climate Change for Future Wildfire Scenarios in the Western United States by Dominique Bachelet of Oregon State University, and James M. Lenihan and Ronald P. Neilson of the U.S. Forest Service;
  • Gulf Coast Wetland Sustainability in a Changing Climate by Robert R. Twilley of Louisiana State University; and
  • Ramifications of Climate Change for Chesapeake Bay Hypoxia by Donald F. Boesch, Victoria J. Coles, David G. Kimmel and W. David Miller of the University of Maryland Center for Environmental Science.

Each case study focuses on a specific type of impact that is of particular concern for a region, but is not unique to that region. Each study also considers non-climatic factors, such as development and management practices, that are likely to interact with climate change. Consequently, cross-cutting themes emerge that are relevant to a wide array of regional and local climate change impacts beyond those examined here.

  

A. Individual Case Studies

Midwestern heatwaves. In coming decades heatwaves in the Midwest are likely to become more frequent, longer, and hotter than cities in the region have experienced in the past. This trend will result from a combination of general warming, which will raise temperatures more frequently above thresholds to which people have adapted, and more frequent and intense weather patterns that produce heatwaves. Studies projecting future mortality from heat foresee a substantial increase in health risks from heatwaves. Several factors contribute to increasing risk in Midwestern cities, including demographic shifts to more vulnerable populations and an infrastructure originally designed to withstand the less severe heat extremes of the past. The elderly living in inner cities are particularly vulnerable to stronger heatwaves; other groups, including children and the infirmed, are vulnerable as well. Adaptations of infrastructure and public health systems will be required to cope with increased heat stress in a warmer climate.  

Fire in the West. Wildfire is a natural part of the western landscape and is very sensitive to climate variability. In recent decades, a trend toward earlier spring snowmelt and hotter, drier summers has already increased the number and duration of large wildfires in the West (Westerling et al., 2006). Although total annual precipitation may increase in the Northwest, climate projections generally foresee less precipitation throughout the West during the summer when risk of fire is greatest. In Alaska and Canada, warming has accelerated the reproduction and increased the winter survival and geographic range of insect pests that may make forests more vulnerable to fire by killing more trees (Berg et al., 2006; Volney and Fleming, 2000). Development in the West has placed more people and assets in fire-prone areas, increasing the need to suppress wildfires (McKinley and Johnson, 2007). Ironically, suppression increases the risk of catastrophic fire by allowing vegetation to build up, providing more fuel for fires when they ignite. Humans have also introduced invasive plant species that consume limited soil moisture and burn readily. Careful attention to development decisions and human-induced ecosystem stressors may help with adapting to increased risk from fire in the West resulting from climate change.  

Gulf Coast wetlands. The coastline of the Gulf of Mexico offers a prototypical example of how human development patterns and climate change can interact to create high risks to human and natural systems. The combination of intense development in low-lying coastal areas, building levees along major rivers such as the Mississippi, high pollution levels, and extreme weather events, have degraded economically and culturally valuable coastal wetlands and made many human settlements in the Gulf region more vulnerable to rising seas and coastal storms. Accelerated sea-level rise and more intense hurricanes resulting from climate change would increase these risks. Therefore, plans to restore Gulf Coast wetlands and make them resilient to human activities and climate variability require careful consideration of how future climate change and human activities will degrade or enhance the natural processes that build and maintain coastal wetlands.  

Chesapeake Bay hypoxia. Hypoxia (inadequate levels of oxygen that can lead to dead zones) in the Chesapeake Bay is another example of a natural phenomenon made substantially worse by human development and that could also be exacerbated by climate change. Hypoxia occurs when nutrient runoff from land stimulates biological oxygen demand, reducing oxygen levels in the Chesapeake Bay. This condition adversely affects the bay ecosystem, including its fisheries, and recreational opportunities in the bay. Development within the Chesapeake Bay watershed has resulted in runoff of nutrients from farms and settlements, increasing the incidence and intensity of hypoxia in the bay. Increased regional rainfall, which washes nutrients into the bay, and higher summer temperatures, which accelerate oxygen depletion, are likely to increase the incidence and intensity of hypoxia in the Chesapeake Bay. These changes could alter the current assessment of nutrient reductions needed to meet water quality objectives.

  

B. Cross-cutting Themes

The case studies provide but a few diverse examples of potential climate change impacts. Many other impacts will occur far and wide and will affect many sectors in all regions of the country and the world in different ways. However, several key themes emerge from these studies that are likely to cut across many distinct impacts in many different regions:  

Impacts from climate change are already apparent. In all four of the case studies, there is growing evidence that climate change may already be increasing risks. To be sure, attribution of particular events either wholly or partially to climate change is a difficult process that can be controversial. But the literature linking climate change with the events discussed in this report is growing. Westerling et al. (2006) found that climate change over the 20th century is a key factor explaining the increase in fires in the American West after accounting for human settlements and fire management. Extreme heat events in the United States are on the rise. DeGaetano and Allen (2002) found that minimum and maximum temperatures increased in the latter half of the 20th century, with particularly large increases in urban areas. Multi-day extreme heat events are also increasing. Global sea levels have been rising for centuries, but recently the rate of sea-level rise has accelerated (IPCC, 2007). This rise is likely contributing to some loss of wetlands in places such as the Gulf of Mexico and the Chesapeake Bay. Finally, there is growing evidence that the intensity and possibly the number of hurricanes in the Atlantic have increased in recent decades as a result of rising sea surface temperatures (Emanuel, 2005; Hoyos et al., 2006).  

Multiple stressors exacerbate climate change impacts on natural systems. Enlarged pest populations, invasive species, and fire suppression all increase the vulnerability of ecosystems to fire. Nutrient inputs from farms and settlements increase the potential for hypoxia in coastal estuaries. Canals, flood-control structures, and pollution decrease the resilience of wetlands to rising sea levels and powerful storms. In many cases stressors that limit the ability of natural systems to resist stress from climate change are under human control, either directly (e.g., development) or indirectly (e.g., invasive species). Successful adaptation to climate change will likely require close attention to the many ways that human activities can be altered to increase ecosystem resilience to climate change.

Development patterns affect vulnerability to climate change impacts. In the four studies presented here, development and associated planning decisions and management practices exacerbate the impacts of climate change. The concentration of infrastructure and housing along with dense populations of the poor and elderly make inner cities more vulnerable to heatwaves than less developed areas. Increased population, building of impervious surfaces, and agriculture in the Chesapeake Bay watershed increase runoff of nutrients and risk of hypoxia. Development in low-lying coastal areas of the Gulf and Atlantic coasts places more people and property along the coastline and degrades buffering wetlands, putting people at greater risk from faster sea-level rise and more intense coastal storms. More development in wilderness areas in the West also increases the number of people and amount of property facing wildfire risk, as climate change increases the frequency and intensity of large fires. Adaptation to climate change will require closer attention to the implications of development patterns and land use decisions for climate change impacts.  

There are likely to be increasing risks and costs from future climate change. The impacts of future climate change are likely to become greater as climate continues to change. There will likely be more loss of wetlands, higher risk to human life and property from stronger storms and hurricanes in the Gulf of Mexico and the Atlantic, more potential for hypoxia in the Chesapeake Bay and other coastal waters, more frequent and more intense heatwaves with greater risks to human health, and more frequent and intense wildfires. Many impacts not examined here would likely follow similar trends. Droughts and flash floods, for example, will likely increase in the future, presenting greater risks in areas that are already prone to such events (IPCC, 2007).  

Climate change could have important consequences for the private insurance industry and for public disaster management and response. Many of the impacts discussed in these studies could affect lives and property, and therefore, are likely to affect insurance claims as well as government response to (and perhaps preparation for) disasters. For example, greater loss of life from more intense heatwaves and property damage from hurricanes and fires could well result in higher insurance payouts and insurance companies refusing coverage to more individuals and businesses. This effect would likely have further consequences for insurance rates, deductibles, and profits, which could affect other parts of the economy. Public disaster management and response will require increased resources and more funding in a future with more frequent and bigger fires, floods, and heatwaves.  

Adaptation will be important in determining future vulnerability. The climate is already changing and affecting society and nature. Significant reductions in greenhouse gas emissions leading to lower atmospheric concentrations would reduce the magnitude of climate change and its impacts. Nonetheless, even with the most optimistic emissions reductions, there will still be substantial additional climate change. Thus, adaptation is an important component of a response to climate change. Reducing the level of pollution in the Chesapeake Bay will most likely reduce the risks of hypoxia. Adoption of heatwave early warning systems and other measures such as improving access to air conditioning have been shown to reduce risks from extreme heat events (Ebi et al., 2004). Wisely managing development patterns and vegetation can reduce the risks of fire (Platt et al., 2006). Evacuation planning, adoption of certain building designs, and limiting development in coastal areas can reduce risks from hurricanes. Furthermore, limits on certain types of development can also reduce destruction of wetlands, which are important for their ecosystem services. 
 

C. Final Thoughts

Although climate change is a global problem, its impacts vary widely and are felt locally. With this report, the Pew Center on Global Climate Change endeavors to provide not just useful information about particular impacts in particular regions, but also a more general perspective on the types of challenges decision-makers everywhere will face in developing sustainable responses to varied climate impacts. Historically, risk management strategies have relied on the past as a guide to the future. But with global climate change, the future will no longer resemble the past. As illustrated by the four regional studies that follow, new strategies for developing resilience to climate variability and extreme weather events will be needed. Well-considered assumptions about regional climate change should be incorporated into development and management plans. Studying regions with different vulnerabilities will provide insights and methods for conducting assessments in other regions and sectors.    

Joel B. Smith
STRATUS CONSULTING  

Jay Gulledge
PEW CENTER ON GLOBAL CLIMATE CHANGE 

References

Berg, E.E., J.D. Henry, C.L. Fastie, A.D. De Volderd, and S.M. Matsuoka. 2006. Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. Forest Ecology and Management 227:219-232.

DeGaetano, A.T. and R.J. Allen. 2002. Trends in twentieth-century temperature extremes across the United States. Journal of Climate 15:3188-3205.

Ebi, K.L., T.J. Teisberg, L.S. Kalkstein, L. Robinson, and R.F. Weiher. 2004. Heat watch/warning systems save lives: estimated costs and benefits for Philadelphis 1995-1998. Bulletin of the American Meteorological Society 85:1067-1073.

Emanuel, K. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686-688.

Hoyos, C.D., P.A. Aguidelo, P.J. Webster, and J.A. Curry. 2006. Deconvolution of the factors contributing to the increase in global hurricane intensity. Science 312:94-97.

IPCC (Intergovernmental Panel on Climate Change). 2007. Climate Change 2007: The Physical Science Basis.  Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor, and H.L. Miller (eds.).  Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

McKinley, J. and K. Johnson. 2007. On fringe of forests, homes and wildfires meet. New York Times, June 26.

Platt, R.V., T.T. Veblen, and R.L. Sherriff. 2006. Are wildfire mitigation and restoration of historic forest structure compatible? A spatial modeling assessment. Annals of the Association of American Geographers 96:455-470.

Smith, J.B. 2004. A Synthesis of the Potential Impacts of Climate Change on the United States. Pew Center on Global Climate Change, Arlington, VA.

Volney, W.J.A. and R.A. Fleming. 2000. Climate change and impacts of boreal forest insects. Agriculture, Ecosystems & Environment 82:283-294.

Westerling, A.L., H.G. Hidalgo, D.R. Cayan, and T.W. Swetnam. 2006. Warming and earlier spring increases western U.S. forest wildfire activity. Science 313:940-943.

About the Authors

 

Heatwaves in the Midwest. Dr. Kristie L. Ebi is an independent consultant (ESS, LLC) and has studied connections between climate change and human health for more than ten years. She is working with the World Health Organization, UN Development Program, and USAID on adaptation measures for developing countries, and with the Center for Climate Strategies on adaptation options for U.S. states. She is a Lead Author for the Human Health chapter of the Fourth Assessment Report of the Nobel Peace Prize-winning IPCC, and Lead Author for Human Health for the U.S. Climate Change Science Program’s assessment of global change effects on human health and welfare.  She has edited three books on climate change and health, and has more than 75 publications.  Dr. Ebi earned the M.S. degree in toxicology from MIT, and the Ph.D. and MPH degrees in epidemiology from the University of Michigan.

Dr. Gerald A. Meehl is a Senior Scientist in the Climate and Global Dynamics Division at the National Center for Atmospheric Research, where he has worked in various capacities since 1973, including his involvement in several large international climate experiments. He specializes in modeling climate dynamics, including the possible effects of increased carbon dioxide, sulfate aerosols, and other natural and manmade drivers of global climate. He was a Coordinating Lead Author for the Global Climate Projections chapter in the Fourth Assessment Report of the Nobel Peace Prize-winning IPCC. He also contributed to all of the previous IPCC assessment reports. Among other committee appointments, he is a member of National Research Council’s Climate Research Committee. He has published more than 150 peer-reviewed articles and contributed to several textbooks. Dr. Meehl earned the Ph.D. in climate dynamics from the University of Colorado in Boulder.

Fire in the West. Dr. Dominique Bachelet is an associate professor in the Department of Biological and Ecological Engineering at Oregon State University and Director of Climate Change Science at The Nature Conservancy. She uses models to study complex ecological systems and how they respond to climate variability and change. Over the past decade, she has worked with colleagues at Oregon State University, Colorado State University, and the U.S. Forest Service to develop the MC1 dynamic vegetation model which uses global climate model scenarios to project, among other things, future wildfire characteristics resulting from climate change. She has published more than 20 peer-reviewed scientific articles. Dr. Bachelet earned the Ph.D. from Colorado State University in 1983 and subsequently worked at the University of California Riverside, New Mexico State University, and the US Environmental Protection Agency.

Gulf Coast wetland sustainability. Dr. Robert R. Twilley is Distinguished Professor in Louisiana Environmental Studies and Associate Vice Chancellor of Research and Economic Development at Louisiana State University. He directs the Shell Coastal Environmental Modeling Laboratory and heads the Coastal Louisiana Ecosystem Assessment and Restoration program, which develops ecosystem models coupled with engineering designs to forecast the rehabilitation of coastal and wetland ecosystems. He edited a 64-author, two-volume report that is Louisiana’s official coastal restoration plan. Before moving to LSU, Dr. Twilley founded the Center for Ecology and Environmental Technology at University of Louisiana at Lafayette. He has published more than 80 peer-reviewed articles and co-edited the 1999 book, The Biogeochemistry of Gulf of Mexico Estuaries. Dr. Twilley received his PhD in plant and systems ecology from the University of Florida in 1982 and conducted postdoctoral research at University of Maryland on the Chesapeake Bay.

Chesapeake Bay Hypoxia. Dr. Donald F. Boesch is professor of marine science and President of the University of Maryland Center for Environmental Science. He has studied marine ecosystems of the Atlantic and Gulf coasts of the U.S. and in Australia and the East China Sea. He serves on the National Research Council’s Ocean Studies Board and the Board of Trustees of the Consortium for Ocean Leadership. He was a lead author on the U.S. National Assessment of the Potential Consequences of Climate Variability and Change, and is leading an impacts assessment for the Maryland Commission on Climate Change. He recently testified in the Senate on the impacts of global warming on the Chesapeake Bay and improving the Federal climate change research and information program. He has published two books and more than 85 research articles. He received his Ph.D. in marine science from the College of William and Mary in 1971.

Dominique Bachelet
Donald F. Boesch
Gerald A. Meehl
Kristie L. Ebi
Robert R. Twilley
0

Press Release: Report Examines U.S. Regional Impacts of Climate Change

Press Release
December 4, 2007

Contact: Tom Steinfeldt, (703) 516-4146

REPORT EXAMINES U.S. REGIONAL IMPACTS OF CLIMATE CHANGE
ADAPTATION SEEN AS A KEY RESPONSE

As the nations of the world gather this week in Bali, Indonesia, to work on a global agreement to reduce greenhouse gas emissions, the Pew Center on Global Climate Change today released a new report examining key impacts of climate change that are likely to affect different areas of the United States. The report, “Regional Impacts of Climate Change: Four Case Studies in the United States,” assesses particular climate vulnerabilities in the Midwest, West, Gulf Coast, and Chesapeake Bay regions.

The report provides useful information about particular impacts in different regions of the United States, as well as a more general perspective on the types of challenges decision-makers will face in developing workable responses to varied climate impacts. Each study also considers non-climatic factors, such as development and management practices that are likely to exacerbate our vulnerability to climate change.

The four studies are:

The Heat is On: Climate Change and Heatwaves in the Midwest by Kristie L. Ebi of ESS and Gerald A. Meehl of the National Center for Atmospheric Research;

The Importance of Climate Change for Future Wildfire Scenarios in the Western United States by Dominique Bachelet of Oregon State University and James M. Lenihan and Ronald P. Neilson of the U.S. Forest Service;

Gulf Coast Wetland Sustainability in a Changing Climate by Robert R. Twilley of Louisiana State University; and

Ramifications of Climate Change for Chesapeake Bay Hypoxia by Donald F. Boesch, Victoria J. Coles, David G. Kimmel and W. David Miller of the University of Maryland Center for Environmental Science.

The report’s four case studies offer key insights to issues that are likely to affect different regions in the U.S., including:

  • Midwestern cities are very likely to experience more frequent, longer, and hotter heatwaves
  • Wildfires are likely to increase in the West, continuing a dramatic trend already in progress.
  • Gulf Coast wetlands provide critical natural services to humanity, but sustaining these already fragile ecosystems will be increasingly difficult in the face of climate change.
  • The Chesapeake Bay may respond to climate change with more frequent and larger low-oxygen “dead zone” events that damage fisheries and diminish tourist appeal.

The authors find that well-considered assumptions about regional climate change should be incorporated into development and management plans based on a range of plausible projections. Studying regions with different vulnerabilities will provide insights and methods for conducting assessments in other regions and sectors.

“The degree to which we can adapt to the consequences of climate change will be determined in large part by the policies and management practices we put in place today,” said Pew Center President Eileen Claussen, “It is clear that we are already seeing changing conditions, and there is a real urgency for strong national and international policy action.” This report offers insights into how we can adapt to a variety of major impacts that we can expect to face now and in decades to come

Historically, risk management strategies have relied on the past as a guide to the future. But with global climate change, the future will no longer resemble the past. The report finds that adaptation measures will have to be a critical component of any long-term U.S. climate strategy. Managing the impacts of climate change requires that we adapt other human activities so that crucial resources, such as Gulf Coast wetlands or public emergency systems, continue to function effectively.

In a white paper released earlier this year, the Pew Center examines specific adaptation measures currently underway at the state level. This paper, Adaptation Planning – What U.S. States and Localities are Doing,” looks at state and local adaptation efforts and highlights five states with plans already in place and the six additional states considering such measures.

For more information about global climate change and the activities of the Pew Center, visit www.c2es.org.

IPCC Fourth Assessment Report, Summary for Policymakers

IPCC AR4 Summary for Policymakers

Released on November 17, 2007, the Summary for Policymakers of the IPCC Fourth Assessment Synthesis Report represents the IPCC’s most comprehensive and definitive statement to date on climate change. The report presents the key findings of the three Working Group reports released earlier this year by the Nobel Peace Prize winning-IPCC.

The following are some of the key highlights addressed in the Synthesis Report:

  • There is strong certainty that most of the observed warming of the past half-century is due to human influences, and a clear relationship between the growth in manmade greenhouse gas emissions and the observed impacts of climate change.
  • The climate system is more vulnerable to abrupt or irreversible changes than previously thought.
  • Avoiding the most serious impacts of climate change ­-- including irreversible changes – will require significant reductions in greenhouse gas emissions. 
  • Mitigation efforts must also be combined with adaptation measures to minimize the risks of climate change. 


The Synthesis Report is the fourth and final installment of the Fourth Assessment Report. The previous three installments published earlier this year examined the physical science basis for climate change, the impacts of global climate change, and the solutions to global climate change, particularly options for reducing greenhouse gas emissions.

For the full report, visit the IPCC website. For a summary of the synthesis report, click here (pdf). Relevant materials can be linked to from the "Related Content" box above.

Statement by Eileen Claussen, President, Pew Center on Global Climate Change

November 19, 2007

The latest IPCC report underscores the need for immediate and sustained action to reduce greenhouse gas emissions, both in the United States and globally. In the United States, many states are demonstrating strong leadership, and I am confident Congress is on the path to enacting a comprehensive mandatory policy in the near future.

Globally, 2008 marks a significant milestone as the Kyoto commitments take effect. But many already have their sights set on a post-Kyoto framework, and steps toward a new international agreement will be the key issue before negotiators next month in Bali.

The ideal outcome from Bali would be a clear mandate to negotiate a comprehensive post-2012 agreement establishing fair, effective, and binding commitments for all major economies.  Unfortunately, despite the latest wakeup call from the IPCC, it appears that the United States and some other key governments are not yet prepared to negotiate real commitments.  Even if a clear negotiating mandate isn’t possible, it is imperative that any process launched in Bali leave the door open to negotiating commitments.  That way, when a new U.S. administration takes office, governments can quickly get down to the business of forging an effective and durable post-2012 framework.

Back to coverage of the IPCC's Fourth Assessment Report

IPCC Fifth Assessment Report

What is the IPCC and why is it important?

The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for the assessment of climate change. It was established by the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO) in 1988 to provide the world with a clear scientific review of the current state of knowledge on climate change.

Thousands of scientists from all over the world volunteer and are selected to review and assess the latest relevant scientific, technical and socio-economic data to understand climate change, its potential impacts, and options for adaptation and mitigation. The IPCC aims to reflect a range of views and expertise in order to publish comprehensive and objective assessments.

The IPCC does not conduct independent research, rather it convenes climate experts from around the world every five to seven years to synthesize the latest climate research findings in peer-reviewed and published scientific/technical literature. The IPCC issued comprehensive assessments in 1990, 1995, 2001, and 2007.

IPCC reports are never policy prescriptive but the conclusions are relevant to nations, states, and businesses interested in enacting policies to limit future warming and reduce the costs of climate change.

What is the Fifth Assessment report?

The Fifth Assessment Report (AR5) is the latest in a series of reports from the IPCC assessing scientific, technical, and socio-economic information regarding climate change. It will be released in three installments over the course of 2013 and 2014, and an additional synthesis report will be published in October 2014.

More than 830 scientists are involved in writing the reports and hundreds more will review and edit the draft reports.

AR5 will comprise three sections, or working groups:

  • Working Group I provides a comprehensive assessment of the physical science basis of climate change: Released Sept. 27, 2013.
  • Working Group II assesses the scientific, technical, environmental, economic and social aspects of vulnerability to climate change as well as consequences for ecological systems, socio-economic sectors and human health: Released March 31, 2014.
  • Working Group III assesses all relevant options for mitigating climate change through limiting or preventing greenhouse gas emissions and taking actions to remove them from the atmosphere: Released April 11, 2014.

The syntheses report is scheduled to be released Oct. 31, 2014

Each working group report has a Summary for Policymakers that distills the key points from the hundreds of pages found in the respective full report. The Summary for Policymakers tend to be of most interest to the media and non-scientists.

What are the key points in the IPCC Working Group I Summary for Policymakers?

The Summary for Policymakers includes the key conclusions from the longer report in a format suitable for a broader audience. The SPM will include observations of changes in the atmosphere, ocean, and cryosphere, including changes in sea level. It will also discuss our confidence in attributing climate change to human activities. The SPM will also include projections of global and regional climate change for the 21st century, including projected changes in the water cycle, extreme weather, sea level, sea ice, and the carbon cycle.

It answers such questions as:

  • What is the state of the science in understanding and attributing climate changes?
  • What are the primary drivers of climate change?
  • How do recent changes compare to paleoclimatic records?
  • In what ways is climate change is already occurring around the globe and how fast are these systems changing?
  • What are models projecting for the 21st century climate and how accurate are they?
  • Which types of climate changes might be irreversible?

What are the key points in the IPCC Working Group II Summary for Policymakers?

The Summary for Policymakers includes important statements and conclusions from the WGII report and is aimed at a broader audience. The WGII SPM is divided into three sections: 1. Observed Impacts, Vulnerability, and Adaptation in a Complex and Changing World; 2. Future Risks and Opportunities for Adaptation; and 3. Managing Future Risks and Building Resilience.

The WGII SPM answers such questions as:

  • What climate-related impacts are already being observed today?
  • What are the key future risks in areas such as water resources, coastal and marine systems, food security, human health, security, and economic growth?
  • Which groups of people are the most vulnerable?
  • What kind of adaptation actions have already been undertaken and which actions could be taken to reduce these future risks?
  • How can adaptation decisions be made when the future is uncertain?
  • What constitutes effective adaptation action and climate-resilient development?

What are the key points in the IPCC Working Group III Summary for Policymakers?

The Summary for Policymakers includes key statements and conclusions from the WGIII report and is aimed at a broader audience. It assesses all relevant options for mitigating climate change through limiting or preventing greenhouse gas emissions, as well as activities that remove them from the atmosphere. It lays out a number of baseline scenarios that, without mitigation efforts, would lead to substantial warming by the end of the 21st century.

It also describes a number of potential mitigation scenarios:

  • To avoid 2 degrees C (3.6 degrees F) of warming relative to pre-industrial time, the report indicates that atmospheric concentrations of greenhouse gases need to be stabilized around 450 ppm CO2-eq or lower. Given that we are currently around 430 CO2-eq, this is a tall order, requiring large-scale changes in energy systems and land use. For example, achieving this level of stabilization will require more rapid improvements in energy efficiency and a tripling to nearly a quadrupling of the share of zero- and low-carbon energy supply from renewables, nuclear energy, and fossil energy with carbon capture and storage, or bioenergy with carbon capture and storage, by the year 2050.
  • The aggregate economic cost of mitigation varies widely, but generally increases based on the stringency of the level of mitigation. In general, the costs of mitigation only offset a relatively small fraction of global projected economic growth for the 21st century.
  • The 2020 individual country-pledged goals (under the Cancún Agreements) are unlikely to put us on a path to avoid 2 degrees C (3.6 degrees F) of warming; further substantial reductions beyond 2020 would need to be made. Continuing on the pathways consistent with the Cancún pledges is more consistent with scenarios likely to keep temperature change below 3 degrees C relative to pre-industrial levels.
  • If we do not strengthen mitigation efforts between now and 2030, it will be more difficult and more expensive to achieve warming targets, such as avoiding 2 degrees of warming relative to pre-industrial levels.

Additional resources:

The IPCC's growing certainty of human involvement in global warming

IPCC homepage

WGI homepage: The Physical Science Basis

WGII homepage: Impacts, Adaptation, and Vulnerability

WGIII homepage: Mitigation of Climate Change

C2ES summaries of the Fourth Assessment Report

IPCC Fourth Assessment Report, Working Group II

IPCC AR4 WGII: "Impacts, Adaptation & Vulnerability"

The second installment to the IPCC Fourth Assessment Report was released April 6, 2007. The Working Group II installment to the report addresses "Impacts, Adaptation and Vulnerability". The WGII report provides a detailed analysis of observed changes in natural and human systems and the relationship between those observed changes and climate change, as well as a detailed assessment of projected future vulnerability, impacts, and response measures to adapt to climatic changes for main sectors and regions.

According to the IPCC, the report from Working Group II on the impacts of climate change answers the following questions:

  • What is the current state of knowledge on impacts of climate change?
  • What is the state of knowledge on impacts under different levels of adaptation?
  • What are the impacts under different levels of mitigation?
  • What is the state of knowledge concerning observed effects?

For the full report, visit the IPCC website. For a summary of the report, click here (pdf).

Back to coverage of the IPCC's Fourth Assessment Report

IPCC Fourth Assessment Report, Working Group I

IPCC AR4 WGI: "The Physical Science of Climate Change"

The first installment to the IPCC Fourth Assessment Report was released February 2, 2007. According to the IPCC, the Working Group I Report, "The Physical Science Basis", assesses the current state of knowledge about the natural and human drivers of climate change, reflecting the progress of the climate change science in the observation of the atmosphere, the Earth's surface and oceans. It provides a paleoclimatic perspective and evaluates the Earth's surface and oceans. Main topics include changes in atmospheric composition, observation of various climate parameters, coupling between changes in climate and biogeochemistry, evaluation of models and attribution of climate change.

Working Group I Report, "The physical science basis", assesses the current state of knowledge about the natural and human drivers of climate change, reflecting the progress of the climate change science in the observation of the atmosphere, the Earth's surface and oceans. It provides a paleoclimatic perspective and evaluates future projections of climate change. Main topics include changes in atmospheric composition, observation of various climate parameters, coupling between changes in climate and biogeochemistry, evaluation of models and attribution of climate change..

According to the IPCC, the report from Working Group I on the science of climate change answers the following questions:

  • What progress has been made in understanding and attributing climate change?
  • What do observations of the atmosphere, oceans, sea level, snow and ice tell us?
  • How has climate been behaving in the last hundreds of thousands of years?
  • Which are the projections of future changes?

For the full report, visit the IPCC website. For a summary of the report, click here (pdf). Relevant materials, including a statement from C2ES can be linked to from the "Related Content" box above.

Back to coverage of the IPCC's Fourth Assessment Report

Statement: IPCC Fourth Assessment Report, Working Group II

Intergovernmental Panel on Climate Change (IPCC) Releases New Assessment Report on the Impacts of Climate Change

Statement by the Pew Center on Global Climate Change

April 6, 2007

The IPCC Fourth Assessment “Summary for Policymakers” Working Group II report represents the IPCC’s strongest statement to date on the impacts of global climate change. Because of a dramatic increase in the number and quality of observations, this report concludes that, “it is likely [better than 2:1 odds] that anthropogenic warming has had a discernible influence on many physical and biological systems.” The report also projects with greater confidence than in the past that many regions, including North America, will experience severe impacts in the future, even for moderate warming scenarios. Particularly vulnerable are low-lying coastal regions worldwide. Many poor countries at low latitudes are also particularly vulnerable because of a combination of strong climate impacts, low capacity for adaptation, and heavy reliance on climate-impacted resources, such as local food and water supplies.

The assessment is based on extensive published, peer-reviewed scientific literature.  Today’s report is the second of three major studies that comprise the Fourth Assessment with input from more than 1,200 authors and 2,500 scientific expert reviewers from more than 130 countries. The first report, released in February 2007, examined the physical science basis for climate change. The third report, to be released in May 2007, will explore the solutions to global climate change, particularly options for reducing greenhouse gas emissions.

 

Statement by Eileen Claussen, President Pew Center on Global Climate Change

April 6, 2007

This week began with a landmark decision by the US Supreme Court and ended with the release of the IPCC's 4th Assessment on climate change impacts.  Following the Supreme Court's decision, it's clear that EPA has the authority – and should -- regulate CO2, and the IPCC report delivered the strongest statement to date on the consequences of climate change. Taken together with increasing calls from CEOs, states, and the public, the message is loud and clear: Read our lips - We need mandatory climate policy in the United States. 

 

Trends in CO2 Emissions

This figure shows emissions of carbon dioxide (CO2) by fuel source across all sectors of the economy. The fuels shown are coal, natural gas, petroleum, as well as the total emissions.

Overall, coal and petroleum consumption are down since 2007, while natural gas use has increased. In the electric power and indutrial sectors, natural gas, which emits about half the amount of CO2 as coal, is being used more extensively due to its lower price. In the transportation sector, petroleum consumption is down due to an increase in car and light truck fuel economy (for a similar number of vehicle miles traveled, year-on-year). Correspondingly, total emissions have generally declined since 2007. 

Source: EIA (2014)

U.S. CO2 Emissions from the Electric Power Sector

This figure shows the emissions of carbon dioxide (CO2) from the burning of fossil fuels for electric power generation. The electricity-generating fuels shown here are coal, natural gas, petroleum and non-biomass waste. Natural gas, which emits about half the amount of CO2 as coal, is being used more extensively due to its lower price and displacing coal-fired generation, while petroleum-fired electricity generation continues to be retired.

Source: EIA (2014)

U.S. Trends in Greenhouse Gas Emissions

This figure shows the trend in U.S. greenhouse gas emissions between 1990 and 2012. Emissions increased by 4.7 percent between 1990 and 2012.

Greenhouse gas emissions have been declining since 2007 for a few reasons:

  1. A greater share of electricity is being generated with natural gas and renewable energy. This has offset coal-fired electricity generation, which emits about two times the amount of carbon dioxide (a greenhouse gas) as natural gas-fired electricity generation per unit of electric energy. Energy efficiency has also contributed by keeping electricity demand growth very low.
  2. Economic activity decreased during the Great Recession, which ran from December 2007 until June 2009. Additionally, the structure of the U.S. economy continues its long-term shift from a manufacturing-based to a service-based economy, which is less energy-intensive.
  3. Consumption of fossil fuels in the transportation sector has decreased due to lower economic activity, more fuel-efficient vehicles on the road, greater use of biofuels and other social shifts that reduce total vehicle miles traveled, including an aging population, technology (telework), growing cities and greater use of public transportation.

Emissions have decreased 10 percent from 2005 to 2012.


 
Source: Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990-2012 (EPA 2014)


 

Syndicate content