The interdependence of water and energy

Have you ever thought that by leaving a light on, you’re wasting water, or that a leaky faucet wastes energy? It’s odd, but accurate.

That’s because water and energy are interrelated. Water is used in all phases of energy production, and energy is required to extract, pump, and move water for human consumption. Energy is also needed to treat wastewater so it can be safely returned to the environment.

C2ES recently hosted a series of webinars (video and slides here) on the intersection between water and energy (sometimes referred to as the “nexus”). The series was co-sponsored by the Association of Metropolitan Water Agencies and the Water Information Sharing and Analysis Center. Participants discussed how the water and energy sectors depend on each other and how they can work together to conserve resources.

Webinar - Water for Energy and Energy for Water: Innovation and Effective Stakeholder Engagement

Promoted in Energy Efficiency section: 
2 p.m. – 3 p.m. EDTView slides here.See video here.


Webinar 3: Innovation and effective stakeholder engagement on water and energy issues

July 24, 2014
2 p.m. – 3 p.m. EDT

Involving other stakeholders or partners for a water-energy project often leads to insights, innovations, and/or greater efficiency. In this third and final webinar, speakers from American Water and East Bay Municipal Utility District (EBMUD; California) discuss how they leveraged stakeholder involvement to address water-energy challenges and implement innovations. 

Suzanne Chiavari, Engineering Practice Leader from American Water, will describe some of her organization’s recent work in using renewable energy technologies, and how they’ve engaged community partners to establish greater integration across their resource management activities. Clifford Chan, Manager of Water Treatment and Distribution at EBMUD, will talk about two projects with multiple stakeholders that have helped the utility to implement its energy management strategy.

View slides here.
See video here.

Risky Business report shows need to act on climate change

You expect a business leader to keep a close eye on the bottom line and to act when a threat is clear. As C2ES and others have noted, it is increasingly clear to many business leaders that climate change is a here-and-now threat that we all -- businesses, government and individuals -- must address.

Today’s “Risky Business” report lays out in stark numerical terms the likely economic impact of climate change on U.S. businesses and the U.S. economy. The initiative – co-chaired by former New York City Mayor Michael Bloomberg, former Treasury Secretary Henry Paulson, and former hedge fund manager Tom Steyer – brings high-profile attention to this issue in the hopes that highlighting the risks and potential costs will help spur action to manage the impacts and curb climate-altering emissions.

The report’s outline of the many costs of climate impacts is likely an underestimate. For example, the impacts of diminishing groundwater are difficult to calculate and are not included.

IPCC AR5 Working Group III Highlights

On April 13, 2014, the Intergovernmental Panel on Climate Change (IPCC) released Working Group III’s report on the Mitigation of Climate Change.

The report notes that total greenhouse gas (GHG) emissions from 2000 to 2010 were the highest in human history, reaching 49 Gt CO2eq in 2010. Annual GHG emissions grew on average by 1 Gigatonne of carbon dioxide equivalent (Gt CO2eq) or 2.2 percent per year from 2000 to 2010, a higher rate than at any other period between 1970 to 2010.

Economic and population growth continue to be the most important drivers of emissions growth. Growth in GHG emissions since 1970, including the period of rapid emissions growth since 2000, have been driven by carbon dioxide emissions from fossil fuel combustion, land use changes, and industrial processes: carbon dioxide from these sources account for about 78 percent of the total GHG emission increase from 1970 to 2010.

Carbon dioxide is the major anthropogenic GHG, constituting 76 percent of total 2010 emissions. Methane accounts for 16 percent of emissions (on a CO2eq basis, assuming a 100-year time frame); nitrous oxide accounts for  6.2 percent; and fluorinated gases account for 2 percent.

The report lays out a number of “baseline” scenarios (those without additional mitigation actions or policies).  These scenarios lead to substantial warming by the end of the 21st century, with global mean surface temperature increases in 2100 from 3.7 to 4.8 degrees C (6.7 to 8.6 degrees F) relative to pre-industrial time.

In addition, a number of potential mitigation scenarios are also described.  These scenarios explore ways that some of this warming can be avoided, and how decisions in the near-term affect our ability to avoid longer-term warming.

  • To avoid 2 degrees C (3.6 degrees F) of warming relative to pre-industrial time, the report indicates that atmospheric concentrations of GHGs need to be stabilized around 450 ppm CO2-eq or lower. Given that we are currently around 430 CO2-eq, this is a tall order, requiring large-scale changes in energy systems and land use. For example, achieving this level of stabilization will require more rapid improvements in energy efficiency, and a tripling to nearly a quadrupling of the share of zero- and low-carbon energy supply from renewables, nuclear energy and fossil energy with carbon capture and storage, or bioenergy with carbon capture and storage, by the year 2050.
  • As one might expect, the aggregate economic cost of mitigation varies widely, but generally increases based on the stringency of the level of mitigation. In general, the costs of mitigation only offset a relatively small fraction of global projected economic growth for the 21st century.
  • The 2020 individual country-pledged goals (under the Cancún Agreements) are unlikely to put us on a path to avoid 2 degrees C (3.6 degrees F) of warming ; further substantial reductions beyond 2020 would need to be made. Continuing on the pathways consistent with the Cancún pledges is more consistent with scenarios likely to keep temperature change below 3 degrees C relative to pre-industrial levels.
  • If we do not strengthen mitigation efforts between now and 2030, it will be more difficult and more expensive to achieve warming targets, such as avoiding 2 degrees of warming relative to pre-industrial levels.


Figure SPM.1 from WG III report shows the global anthropogenic GHG emissions from 1970-2010, with the contribution from different gases shown by the colors.  To the right, the 2010 emissions are broken out, showing the relative uncertainties associated with each gas.  Note: “FOLU” is the acronym for “Forestry and Other Land Use.”


This portion of Figure SPM.4 from the WG III report shows the share of global energy that would need to come from low-carbon sources for four different mitigation scenarios.  For all the scenarios, the share of low-carbon energy is relatively large (>70% or higher) at the end of the 21st century.  Only the most aggressive scenarios (shown at the right side of the diagram, in dark and light blue) are likely to keep warming below 2 degrees Celsius – these scenarios include rapid growth of low-carbon energy, in which its share exceeds 50% of global energy by 2050.



Climate change poses national security risks at home and abroad

More than a dozen military leaders say the impacts of climate change threaten military readiness and response and will increase instability and conflict around the globe.

Their assessments are included in a recent report, National Security and the Accelerating Risks of Climate Change, by the CNA Corporation’s Military Advisory Board. The report’s authors – including 16 retired generals and admirals from the Army, Navy, Air Force, and Marine Corps – conclude that climate change impacts will act as threat multipliers and catalysts. Projected warming, changes in precipitation, sea level rise, and extreme weather events will pose risks to security within the U.S. and abroad.

At home, some of the threats are here and now. Many of the nation’s military installations are in coastal areas vulnerable to rising sea levels and storm surges. For example, the low-lying Hampton Roads area of Virginia is home to 29 military facilities. Sea level in the area is projected to rise 1.5 feet over the next 20-50 years and as much as 7.5 feet by the end of the century. One advisory board member, Brig. Gen. Gerald Galloway, stressed that “unless these threats are identified and addressed, they have the potential to disrupt day-to-day military operations, limit our ability to use our training areas and ranges, and put our installations at risk in the face of extreme weather events.”

Figure 1: Sea level rise projections for the Hampton Roads region, which is home to 29 different military facilities. Source: CNA, 2014

California's drought breaks records

In California, it’s almost impossible to avoid hearing about the drought. Restaurants serve water only upon request, “Save Our Water” radio ads run daily, and the issue headlines news broadcasts.

The persistent drought threatens to increase the risk of wildfires, damage crops, and harm wildlife. For example, UC Davis researchers estimate the state’s farm industry could lose $1.7 billion and nearly 15,000 jobs in 2014 due to the drought.

While Californians are no strangers to drought, this one in particular is cause for alarm. For the first time in the 15-year history of the National Drought Monitor, the entire state faces ‘severe’ (in yellow in Figure 1 below), ‘extreme’ (in red), or ‘exceptional’ (in dark red) levels of drought. In fact, October 2013-September 2014 could wind up being one of the driest periods in nearly 500 years.

Relief is unlikely to come soon. The Climate Prediction Center at the National Oceanic and Atmospheric Administration (NOAA) suggests the drought will persist and intensify in California through the summer.

Figure 1. The entire state of California is experiencing severe, extreme, or exceptional drought. This is the first time this has happened since the Drought Monitor began such classifications 15 years ago. Source: US Drought Monitor: California, (National Drought Mitigation Center, 2014),


National Climate Assessment

National Climate Assessment

People across the United States are dealing with the impacts of climate change: Farmers and ranchers across the Great Plains battle drought, transportation planners consider how floods might affect roads and bridges, and utility managers try to keep the electricity flowing during heat waves.

The Third National Climate Assessment (NCA), released May 6, 2014, is a compendium of the ways climate change affects our lives, livelihoods, and the economy in general. It describes how the climate has changed over the past century and provides a glimpse of future climate change and its impacts. The report also looks at how society is responding to a changing climate, and identifies actions we can take to prepare.

Read C2ES President Eileen Claussen's statement on the Third National Climate Assessment

What is the NCA?

The NCA is a congressionally mandated report to the president and Congress that “analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity.”

It’s a comprehensive synthesis describing how the climate has changed in different regions of the country, and the impacts to these regions and various sectors that scientists expect in the 21st century.

The report advances the concept of climate change as a “risk management” challenge, laying out the critical services, like access to water and energy, and natural resources likely to be disrupted or harmed by climate impacts.

The NCA can be a useful tool for public and private sector decision-makers trying to address climate challenges.

What are the key findings?

The report tells us that:

  • Climate change is not just a problem for the future; it is happening here and now and is occurring faster than previously expected.
  • Changes in some U.S. weather extremes, like heat waves and heavy rainfall events, are related to human-induced climate change.
  • Climate impacts are threatening Americans’ health, infrastructure, water supplies, agriculture, ecosystems, and oceans.
  • The costs of climate change are high and will increase if emissions are not controlled.
  • Americans have tools at their disposal and are already beginning to take steps to reduce emissions, develop clean energy, and build resilient cities and industries that can withstand the effects of extreme weather.

The report identifies opportunities for adaptation, advocating that actions taken now are likely to return greater benefits than actions taken in the future. In addition, the NCA notes that efforts to reduce greenhouse gas emissions are critical for limiting the amount and rate of future climate change, giving adaptation investments a better chance of success.

How can I learn more?

The report is divided into several large sections. We provide links to these portions of the report and a short description of each.

Overview and Report Findings: Summarizes the assessment and the 12 top-line messages of the report.

Our Changing Climate: Explores observed and projected climate change at the global and national scale. Discussion focuses on physical changes, such as temperature, precipitation, and sea level. Observations tend to cover the last 50 to 100 years, while projections extend through the 21st century. Many maps and graphs in this section are referenced throughout the report.

Regions: Discusses in depth the observed and projected impacts for specific U.S. regions.


  • Northeast
  • Southeast and Caribbean
  • Midwest
  • Great Plains
  • Northwest
  • Southwest
  • Alaska
  • Hawaii and U.S. Pacific Islands
  • Oceans
  • Coasts

Sectors: Explores how climate affects economic, social, or ecological resources, typically cutting across geographic boundaries.

  • Water
  • Energy
  • Transportation
  • Agriculture
  • Forests
  • Ecosystems
  • Human Health

Cross-cutting sectors: Investigates how some types of communities are affected by climate impacts, the interrelationships among many resource decisions, and the large-scale changes in biogeochemistry that accompany climate change. Many of these chapters were not in previous assessments.

  • Urban infrastructure and vulnerability
  • Indigenous peoples, lands, and resources
  • Rural communities
  • Energy, water, and land use
  • Land use and land cover
  • Biogeochemical cycles

Responses: Looks at solutions, as well as the research, data, and tools that will facilitate the implementation of solutions.

  • Decision Support
  • Mitigation
  • Adaptation
  • Research Needs
  • Sustained Assessment

How is the report assembled?

The NCA was written by 240 authors with diverse expertise and experience. They include academic researchers; local, state, and federal government officials; private sector leaders; and non-profit experts. Their efforts are coordinated by the U.S. Global Change Research Program (USGCRP), a collaboration of 13 federal science agencies. A 60-member federal advisory committee, the National Climate Assessment Development Advisory Committee (NCADAC), oversees the development of the NCA report and makes recommendations about the ongoing assessment process.

Previous assessments were released in 2000 and 2009. The latest update is expected to be the start of an ongoing process in collecting and disseminating data and information through various digital media and user networks.

What is the difference between the NCA and IPCC reports?

The NCA is independent of reports issued by the Intergovernmental Panel on Climate Change (IPCC). Although both are based on the latest science, and reach similar conclusions, they differ significantly their scope and focus. Here are some key differences:

  • The NCA discusses observed and projected climate impacts in the United States, focusing on eight sub-regions, while the IPCC discusses observed and projected climate impacts at the continental scale.
  • The NCA is subject to review by the National Academy of Sciences, government agencies, and the public. The IPCC is subject to scientific and governmental review.

Heavy Preciptation and Climate Change

Heavy Precipitation and Climate Change

Extreme precipitation events have produced more rain (Figure 1) and become more common (Figure 2) since the 1950s in many regions around the world, including much of the United States. In particular, the Midwest and Northeast have exhibited  the strongest increases in the amount of rain falling in heavy precipitation events.

Scientists expect these trends to continue as the planet continues to warm. Warmer air can hold more water vapor. For each degree of warming, the air’s capacity for water vapor goes up by about 7 percent.  An atmosphere with more moisture can produce more intense precipitation events, which is exactly what has been observed, averaged over large areas of the Earth.

It is important to note that increases in heavy precipitation may not always lead to an increase in total precipitation over a season or over the year. Some climate models project a decrease in moderate rainfall, and an increase in the length of dry periods, which offsets the increased precipitation falling during heavy events.

Figure 1: The map shows percent increases in the amount of precipitation falling in very heavy events (defined as the top 1% of all daily events) from 1958 to 2011 for each region.
Source: National Climate Assessment

Threats posed by Heavy Precipitation

The most immediate impact of heavy precipitation is the prospect of flooding as streams and rivers in the region overflow their banks. Since 2008, the United States has seen six floods costing at least $1 billion each, resulting in damaged property and infrastructure, agricultural losses, displaced families, and loss of life.

  • In September 2013, Boulder, Colorado, received almost a year’s worth of rainfall (17 inches) in four days. The resulting flooding destroyed homes, shut down thousands of oil and gas wells, and damaged crops.
  • In 2010, almost 20 inches of rain fell on Nashville, Tennessee, over three days. Losses in Nashville alone totaled over $1 billion.
  • In 2008, floods struck the Midwest, with the worst impacts in Iowa and Wisconsin. Losses totaled $15 billion, mainly from property and agriculture.

In addition to flooding, heavy precipitation also increases the risk of landslides. When above-normal precipitation raises the water table and saturates the ground, slopes can lose their stability, causing a landslide. A particularly deadly landslide occurred in March 2014 in Washington state, where landslide risks can be relatively high. The heavy precipitation in the preceding weeks caused a landslide that buried 30 homes and killed at least 41 people

Excessive precipitation can also degrade water quality, harming human health and the ecosystem..  Storm water runoff, which often includes pollutants like heavy metals, pesticides, nitrogen, and phosphorus, can end up in lakes, streams, and bays, damaging aquatic ecosystems and lowering water quality for human uses. In the Chesapeake Bay, elevated levels of nutrients such as nitrogen and phosphorus have led to algae outbreaks, which can lower the water oxygen content, killing clams, oysters and other aquatic life.

Many cities in the United States, such as New York and Philadelphia, use a combined sewer system, where both storm water and wastewater are mixed, treated, and released. Heavy precipitation events can overwhelm such systems, sending excess storm water and wastewater directly into the environment. In the aftermath of Hurricane Sandy, overwhelmed sewer  systems discharged 3.45 billion gallons of untreated sewage into New York City’s rivers, bays and canals. Even in Washington D.C., where coastal flooding was not a factor, 475 million gallons of untreated sewage was discharged into local rivers, drastically reducing water quality.

Figure 2: Relative frequency of once-in-five-year precipitation events falling over a 2-day period, averaged over the  continental U.S, 1900-2011. Green bars in the recent decades show that these events have become more frequent, when averaged across much of the country.
Source: National Climate Assessment

How to Build Resilience

Communities can bolster their resilience and reduce the impacts of heavy precipitation by:

  • Locating buildings and infrastructure on higher ground or areas that are less prone to flooding,  raising buildings, or using flood control infrastructure.
  • Limiting the use of non-permeable surfaces like pavement and concrete in developed areas, or replacing pavement with “green infrastructure” that can reduce runoff during storms.
  • Separating storm water systems from wastewater systems, using holding ponds, or increasing water treatment capacity to avoid sending untreated sewage into local waterways.

Purchasing flood insurance can help families and communities recover after a flood hits. However, recent floods have put the National Flood Insurance Program billions in debt, and further reforms are necessary if public flood insurance will continue to be available in the future.

To Learn More

IPCC’s Special Report on Managing the Risks of Extreme Events (SREX)

US EPA- Heavy Precipitation

National Climate Assessment

Wildfires and Climate Change

Wildfires and Climate Change

The number of large wildfires has nearly doubled since the 1980s, and the average length of wildfire season has grown by more than two months.

Research shows that changes in climate, especially earlier snowmelt and warming in the spring and summer, have helped boost this increase in fire activity in parts of the West. For much of the West, projections show that an average annual temperature increase of 1 °C would increase the median burned area per year. The increase could be as much as 600 percent in some types of forests

Wildfire risk depends on a number of factors, including temperature, soil moisture, and the presence trees, shrubs and other potential fuel. All these factors have  strong direct or indirect ties to climate variability and climate change. Warmer temperatures and drier conditions can often help increase the chances of a fire starting, or help a burning fire spread. Such conditions also contribute to the spread of the mountain pine beetle and other insects that can  weaken or kill trees, building up the fuels in a forest. Although our choices regarding land use and firefighting tactics can also play a role in lowering or raising risks, observed and anticipated changes in climate have and are expected to increase the area affected by wildfires in the United States.

Threats Posed by Wildfires

Since 2000, nine forest fires in the U.S. have caused at least $1 billion in damages each, mainly from the loss of homes and infrastructure, along with firefighting costs.

  • In 2011, the Las Conchas Fire in New Mexico became the state’s largest in history by a factor of three. In 2012, that record was broken as the Whitewater-Baldy Complex fire burned nearly twice as many acres as the Las Conchas Fire.
  • Wildfires burned more than 9 million acres in 2012. Colorado’s two most destructive fires ever—the Waldo Canyon and High Park fires -- happened during this particularly destructive season.
  • From 2007-2008 more than 4,000 homes were destroyed in California alone. More than 15 million acres total burned across the southwest during these two exceptional fire years.

Estimates of the percentage increase in the area burned in regions across the West for a 1.8 degrees Fahrenheit, 1 degree Celsius warming. The different regions correspond to different “ecoprovinces,” which distinguish areas with distinctive vegetation types and climate conditions.  Values are drawn from median burn estimates from a fire model.  All areas exhibit increases; many of them exceed a doubling (i.e., value shown is more than 100%) and some areas show a five-fold increase (i.e., value shown is more than 400%). Source: National Research Council, "Climate Stabilization Targets: Emissions, Concentrations, and Impacts over Decades to Millennia ( 2011 ).

Damage to homes and other buildings can be substantial, in part from the recent and rapid development of areas near fire-prone forests. As the number of homes located near forests at risk of wildfire has increased over the past two decades, U.S. Forest Service fire suppression expenditures more than doubled between 1991-2000 and 2001-2010. State wildfire expenditures also increased substantially. While more buildings add to the risk of damage from natural fires, the presence of people in wildlands increases the risk of fires starting. From 2001 through 2011, 85 percent of wildfires were started by people.

Beyond direct damage to the landscape, several public health risks are related to wildfires. Smoke reduces air quality and can cause eye and respiratory illness. Wildfires can also hasten ecosystem changes and release large amounts of CO2 into the atmosphere—contributing to further climate change.

How to Build Resilience

Communities, builders, homeowners and forest managers can reduce the likelihood and impacts of wildfires by:

  • Discouraging residential developments near fire-prone forests through  smart zoning rules.
  • Increasing the e space between  structures and nearby trees and brush, and clearing space between neighboring houses.
  • Incorporating fire-resistant design features and materials in buildings.
  • Increasing resources allocated to firefighting and fire prevention.
  • Removing fuels, such as dead trees, from forests that are at risk.
  • Developing  recovery plans before a fire hits, and implementing plans quickly after a fire has occurred  to reduce erosion, limit flooding, and minimize habitat damage.

To Learn More

Cal-adapt Wildfire Risk Map

NASA Wildfires: A Symptom of Climate Change

USFS Climate Change Resource Center: Wildland Fire and Climate Change

Water-Energy Webinar Series

Water for Energy and Energy for Water: Challenges and Opportunities for Utilities

A series of three webinars sponsored by the Association for Metropolitan Water Agencies, the Water Information Sharing and Analysis Center, and the Center for Climate and Energy Solutions intended to help utility managers address issues across the water-energy nexus.

  • Webinar 1 – An overview of water/energy issues from national and federal perspectives
    May 8, 2 p.m. – 3 p.m. ET 

Dr. Craig Zamuda from the Department of Energy (DOE) presents key findings from DOE’s recently released water/energy nexus report, attempting to distill some of the key issues and risks of which water and electric utilities should be aware. Dr. Kristen Averyt, Associate Director for Science for the Cooperative Institute for Research in Environmental Sciences and Director of the Western Water Assessment at the University of Colorado, presents her research regarding water-energy challenges that exist currently and are on the horizon.

See video vere.

  • Webinar 2 - Partnerships between water and energy utilities to address water/energy challenges
     June 19, 2 p.m. – 3 p.m. ET

Patrick (Pat) Davis, Sustainability Manager at Orange Water and Sewer Authority (Carrboro, North Carolina) and Doris Cooksey, Water Quality & Planning Manager at CPS Energy  (San Antonio, Texas) share their experiences in addressing water-energy issues, focusing on how they have coordinated and developed shared strategies with peer utilities located in the communities that they serve.

See video here. View slides here.

  • Webinar 3: Innovation and effective stakeholder engagement on water and energy issues
    July 24, 2 p.m. – 3 p.m. EDT
    Involving other stakeholders or partners for a water-energy project often leads to insights, innovations, and/or greater efficiency. In this third and final webinar, speakers from American Water and East Bay Municipal Utility District (EBMUD; California) discuss how they leveraged stakeholder involvement to address water-energy challenges and implement innovations. 

Suzanne Chiavari, Engineering Practice Leader from American Water, will describe some of her organization’s recent work in using renewable energy technologies, and how they’ve engaged community partners to establish greater integration across their resource management activities. Clifford Chan, Manager of Water Treatment and Distribution at EBMUD, will talk about two projects with multiple stakeholders that have helped the utility to implement its energy management strategy.

See video here. View slides here.

Syndicate content