Federal

The Center for Climate and Energy Solutions seeks to inform the design and implementation of federal policies that will significantly reduce greenhouse gas emissions. Drawing from its extensive peer-reviewed published works, in-house policy analyses, and tracking of current legislative proposals, the Center provides research, analysis, and recommendations to policymakers in Congress and the Executive Branch. Read More
 

Eileen Claussen Statement on McCain-Lieberman Vote

FOR IMMEDIATE RELEASE:
Thursday, October 30, 2003


Contact: Katie Mandes (703) 516-0606


Eileen Claussen Statement on McCain-Lieberman Vote

Washington, DC — Today's Senate vote on the Climate Stewardship Act demonstrates strong and growing bipartisan support for real action against climate change. John McCain and Joe Lieberman have crafted a piece of legislation that is ambitious yet achievable and affordable. The bill couples strong environmental goals with a flexible market-based approach that allows business to reduce emissions at the lowest possible cost. According to an analysis by MIT economists the cost to the average U.S. household would be just $15 a year in 2010, a modest price for insurance against the very real risks of global warming. It may be some time before a bill like this can be enacted. But thanks to this bill, Congress is for the first time engaged in a genuine debate over climate solutions. This debate is long overdue. This is a beginning.

###

The Pew Center was established in May 1998 by The Pew Charitable Trusts, one of the United States’ largest philanthropies and an influential voice in efforts to improve the quality of the environment. The Pew Center is an independent, non-profit, and non-partisan organization dedicated to providing credible information, straight answers, and innovative solutions in the effort to address global climate change. The Pew Center is led by Eileen Claussen, the former U.S. Assistant Secretary of State for Oceans and International Environmental and Scientific Affairs.

Critique of the CRA Analysis of Lieberman-McCain Climate Stewardship Act (S.139)

Critique of the Charles River Associates Cost Projections of S.139 (as offered in 10/03)

On Wednesday morning, October 29, 2003, Tech Central Station released a Charles River Associates (CRA) analysis purported to analyze the version of the Lieberman-McCain Climate Stewardship Act (S. 139) to be voted on by the Senate on October 30.  The CRA analysis has neither gone through peer review nor been revised after comment and debate.  Among the most dubious aspects of the CRA analysis is that it projects a price per ton of greenhouse gas (GHG) emissions similar to that projected by the MIT model1 while projecting a much higher impact on GDP and household consumption. 


This is in part because CRA has not actually modeled the bill as it is being offered today.  In particular:

  • The CRA results are largely driven by an assumed hike in personal income taxes not included in the bill.
  • The CRA model does not include reductions of the five GHGs besides carbon dioxide covered by the bill2 which offer low-cost reduction opportunities.

In addition, the CRA analysis incorporates assumptions that further skew its cost estimates upwards.

  • The CRA analysis assumes, as the business-as-usual baseline, massive growth over the next 70 years in carbon-intensive fuels and activities.  This extrapolation exaggerates the reductions needed to meet the long-term targets imposed by their analysis.
  • The CRA analysis assumes that long-term technological change will be limited, ignoring U.S. industry’s long history of innovation in meeting major policy goals, whether related to defense, health, energy or environmental protection.

The CRA analysis assumes that the lower economic growth they project will lead to reduced tax revenue and result in other taxes being raised. But increasing personal income tax leads to greater distortions in the economy, resulting in a vicious cycle: the more the price of energy goes up, the less is consumed, so the personal tax burden is further increased, so less energy is consumed, etc. 

Without assumptions that are not reflective of the bill as written, CRA’s results become more comparable to MIT’s results3.  In CRA’s words, “When all three of these changes [foresight, future policy assumptions, and tax distortions] are combined, we are able to project consumption losses in the range of less than 0.06% or less than $70 per household per year.”


1 CRA projects carbon prices of $27/TC ($7/TCO2) in 2010 and $44/TC in 2020 ($12/TCO2), compared to $31/TC and $52/TC in the MIT study. 
http://web.mit.edu/globalchange/www/abstracts.html#a97
2 The six greenhouse gases addressed by S.139 are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6).
3 MIT projects a 0.02% effect on consumption at an annual cost of roughly $15 per household.

 

 

Summary of MIT Analysis of the Lieberman-McCain Climate Stewardship Act (S.139)

Fact Sheet on MIT Cost Estimates of S.139 (as offered in 10/03)

The Massachusetts Institute of Technology (MIT), through its Joint Program on the Science and Policy of Global Change, has assembled a world-class collaboration of economists and scientists to model and analyze global climate change policies. Using their EPPA1 model, one of the world’s premier energy-economic models, MIT has undertaken the only analysis of the Lieberman-McCain Climate Stewardship Act (S.139) as it will be offered on the Senate Floor in October 2003 – i.e., Phase I only – achieving 2000 emissions in 2010.

  • MIT uses the same economic, energy use and emissions baselines as the U.S. Energy Information Agency (EIA), but has a much less pessimistic view of the future supply curve for natural gas, based on potentially available natural gas sources (federal lands, unconventional gas, Alaska, deep sea and LNG).
  • The strength of the MIT-EPPA model is its treatment of non-CO2 greenhouse gases2 (GHGs) and biomass sequestration – both these sources offer opportunities for low-cost reductions.
  • MIT finds considerable efficiency opportunities, including accelerated penetration of combined heat and power plants and distributed generation.
  • The use of efficiency, non-CO2 GHGs and sequestration means that much less switching in energy supply is required.
    - This allows coal use to remain consistent at around 24 Quads per year.
    - This also means that, although there is some fuel switching to natural gas, overall gas demand growth is less because overall, less energy is being consumed.

Year

Total consumption change
(billion $)

Consumption % change

Cost per household ($)

Natural gas % change from reference

Carbon price in $/tC [$/tCO2]

2010

-1.7

-0.02%

15

-4%

31 [9]

2015

-2.0

-0.02%

17

-8%

40 [11]

2020

-2.4

-0.02%

19

-7%

52 [14]

  • All prices are in $2001.
  • Consumption is the major component of GDP (the others are investment, government expenditures and imports/exports balance) and thus is a good measure of actual impact on the population.
  • In year 2000, US GDP was around $10 trillion with consumption at $6.3 trillion.
  • In year 2000, there were 108 million households in the US with a median income of $41,000, by 2020, there is projected to be 127 million households with a median income of $61,000.


1 Emissions Projections and Policy Analysis Model

2 The six greenhouse gases addressed by S.139 are carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6).

 

Summary of The Lieberman-McCain Climate Stewardship Act of 2003

Summary of The Lieberman-McCain Climate Stewardship Act
(As debated in the U.S. Senate on October 30, 2003)

On October 30, 2003, Senators Joseph I. Lieberman (D-CT) and John McCain (R-AZ) brought a revised version of their Climate Stewardship Act of 2003 (S.139) to a vote in the United States Senate. While the measured failed by a vote of 43 to 55, the vote demonstrated growing bipartisan support for a genuine climate change policy.

The revised version of the bill would require the Administrator of the EPA to promulgate regulations to limit the greenhouse gas (GHG) emissions from the electricity generation, transportation, industrial, and commercial economic sectors (as defined by EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks). The affected sectors accounted for approximately 85% of the overall U.S. emissions in the year 2000. The bill also would provide for the trading of emissions allowances and reductions through a National Greenhouse Gas Database which would contain an inventory of emissions and registry of reductions.

Target: The bill would cap the 2010 aggregate emissions level for the covered sectors at the 2000 level. The bill's emissions limits would not apply to the agricultural and the residential sectors. Certain subsectors would be exempt if the Administrator determined that it was not feasible to measure their GHG emissions. The Commerce Department would biennially re-evaluate the level of allowances to determine whether it was consistent with the objective of the United Nation’s Framework Convention on Climate Change of stabilizing GHG emissions at a level that will prevent dangerous anthropogenic interference with the climate system.

Allowances: An entity that was in a covered sector, or that produced or imported synthetic GHGs, would be subject to the requirements of this bill if it (a) owned at least one facility that annually emitted more than 10,000 metric tons of GHGs (measured in units of carbon dioxide equivalents – MTCO2E); (b) produced or imported petroleum products used for transportation that, when combusted, would emit more than 10,000 MTCO2E; or (c) produced or imported HFC, PFC and SF6 that, when used, would emit more than 10,000 MTCO2E. Each covered entity would be required to submit to the EPA one tradeable allowance for each MTCO2E directly emitted. Each petroleum refiner or importer would be required to submit an allowance for each unit of petroleum product sold that, when combusted, would emit one MTCO2E. Each producer or importer of HFC, PFC, and SF6 would be required to submit an allowance for each unit sold that, when used, would emit one MTCO2E. The Administrator would determine the method of calculating the amount of GHG emissions associated with combustion of petroleum products and use of HFC, PFC, and SF6.

Allocation of Allowances: The Secretary of Commerce would determine the amount of allowances to be given away or "grandfathered" to covered entities and the amount to be auctioned. The Secretary's determination would be subject to a number of allocation factors identified in the bill. Proceeds from the auction would be used to reduce energy costs of consumers and assist disproportionately affected workers.

Flexibility Mechanisms: Covered entities would have flexibility in acquiring their allowances. In addition to the allowances grandfathered to them, covered entities could trade with other covered entities to acquire additional allowances, if necessary. Also, any entity would be allowed to satisfy up to 15% of its total allowance requirements by submitting (a) tradeable allowances from another nation's market in GHGs; (b) a net increase in sequestration registered with the National Greenhouse Gas Database established by the bill; (c) a GHG emission reduction by a non-covered entity registered with the Database; and (d) allowances borrowed against future reductions (as described below). A covered entity that agreed to emit no more than its 1990 levels by 2010 would be allowed meet up to 20% of its requirement through (a) international credits, (b) sequestration, and (c) registered reductions, but not (d) borrowed credits. An entity planning to make capital investments or deploy technologies within the next 5 years would be allowed to borrow against the expected GHG emission reductions to meet current year requirements. The loan would include a 10 percent interest rate.


National Greenhouse Gas Database: The EPA Administrator would be required to implement a comprehensive system for GHG reporting, inventorying, and reductions registrations. Covered entities would be required to report their GHG emissions and non-covered entities would be allowed to register GHG emission reductions and sequestration. The National Greenhouse Gas Database would be, to the maximum extent possible, complete, transparent, accurate, and designed to minimize costs incurred by entities in measuring and reporting emissions. The Commerce Department, within one year of enactment, would be required to establish, by rule, measurement and verification standards and standards to ensure a consistent and accurate record of GHG emissions, emissions reductions, sequestration, and atmospheric concentrations for use in the registry.

Penalty: Any covered entity not meeting its emissions limits would be fined for each ton of GHGs over the limit at the rate of three times the market value of a ton of GHG.

Research: The bill would establish a scholarship program at the National Science Foundation for students studying climate change. The bill would also require the Commerce Department to report on technology transfer and on the impact of the Kyoto Protocol on the U.S. industrial competitiveness and international scientific cooperation.

The bill also would make changes to the U.S. Global Change Research Program, establish an abrupt climate change research program at the Commerce Department, and establish a program at the National Institute of Standards and Technology in the areas of standards and measurement technologies.

Legislation in the 108th Congress Related to Global Climate Change

As the scientific evidence of climate change has mounted, so has congressional activity. The number of climate change-related legislative proposals increased from seven introduced in the 105th Congress (1997-1998) to 25 in the 106th Congress (1999-2000), to over 80 in the 107th Congress (2001-2002), and 96 in the 108th Congress (2003-2004). Of the relevant bills, resolutions, and amendments introduced in the 108th Congress, focus primarily has been on global climate change research and comprehensive emissions cap and trade programs with additional bills concentrated on GHG reporting and power plant emissions of CO2.

The relevant legislative proposals - bills, resolutions, and amendments - for addressing global climate change and GHG emissions in this Congress are listed here in the following categories:

Of note, the 108th Congress enacted the following climate-relevant legislation in 2004:

  • Extension of tax credit for electricity produced from wind, closed-loop biomass and chicken waste.
  • Tax incentives for alcohol and biodiesel fuel.
  • Tax deductions for clean-fuel and electric vehicles.
  • Earmarking of appropriations for programs in developing countries and countries in transition that directly: (1) promote energy conservation, energy efficiency and clean energy; (2) measure, monitor, and reduce GHG emissions; (3) increase carbon sequestration activities; and (4) enhance climate change mitigation and adaptation programs. (H.R.2673, Consolidated Appropriations Act, 2004)
  • Establishment of the Congo Basin Forest Partnership program, recognizing, among other things, the role of Congo Basin forests in absorbing carbon dioxide. (H.R.2264, The Congo Basin Forest Partnership Act of 2003)

In addition, the following bills were acted upon, but not enacted into law:

As one can see, climate change measures are increasingly being offered by members of both the Democratic and Republican Parties (to which all but two members of Congress belong). The growing interest suggests that a bipartisan consensus is developing around the need to address climate change. Addressing climate change will ultimately require a more comprehensive set of approaches, including a mandatory program to reduce GHG emissions (such as a program to cap GHG emissions and allow trading of emission credits), and efficiency standards to promote the use of efficient products and technologies. The first such bipartisan bills were introduced in the 108th Congress. Enactment of such policy will no doubt be a longer-term proposition.

Press Release: New Report Discusses Importance of Climate Policy to Future U.S. Energy Picture

For Immediate Release
July 10, 2003

Contact:   Katie Mandes
703-516-0606

Future U.S. Energy Scenarios: New Report Discusses Importance of Climate Policy to Future U.S. Energy Picture

Washington, DC -Absent a mandatory carbon cap, U.S. carbon dioxide emissions are likely to rise across a wide range of possible energy futures, according to a new report released today by the Pew Center on Global Climate Change, U.S. Energy Scenarios for the 21st Century. The report, written by Irving Mintzer, J. Amber Leonard, and Peter Schwartz of Global Business Network, discusses three divergent paths for U.S. energy supply and use from 2000 through 2035, and the effect of climate policy on the three scenarios.

"This report suggests that technology research and development efforts coupled with voluntary measures cannot reduce greenhouse gas emissions, and it highlights the need for a mandatory climate change policy to address carbon emissions - regardless of how the future unfolds," said Eileen Claussen, President of the Pew Center on Global Climate Change. The Pew Center scenarios explore what might happen to U.S. energy supply and use in the future. They are not predictions, but they cover a wide range of possible energy futures. The scenarios are Awash in Oil and Gas, driven by cheap and abundant oil and gas; Turbulent World, in which energy supply disruptions and threats to energy facilities lead to aggressive energy policy measures; and Technology Triumphs, in which state policies, technological breakthroughs, private investment, and consumer interest push and pull climate-friendly technologies into the marketplace.

The question of how U.S. energy supply and use - which account for over 80 percent of U.S. greenhouse gas emissions - will evolve over the next several decades is critical to developing sound U.S. climate policy. To answer this question, the Pew Center convened two workshops with members of its Business Environmental Leadership Council and experts from the academic and NGO sectors to envision possible future energy scenarios and to draw policy-relevant conclusions from them. This report includes discussion of these three scenarios, as well as assessments of key energy technologies for the future. Three significant insights emerged:

Without a mandatory carbon constraint, the absolute level of U.S. emissions rises in the range of 15 to 50 percent over the year 2000 level in each of the Pew Center scenarios, despite the fact that the carbon intensity of the economy declines considerably. This result points to a key conclusion of this report - policy is necessary to stem these increases and to address climate change.

A second conclusion of the report is that no matter which direction the future takes there are technologies-with supporting policies and investments-that could address climate change, accelerate capital stock turnover, and enhance energy security. If U.S. decision-makers can implement the necessary policies and encourage appropriate investments during the next thirty years, the United States would be better positioned to achieve multiple public policy goals.

Finally, the scenarios indicate that energy policy and investment decisions made today affect the difficulty of implementing a climate policy tomorrow.
"With the appropriate set of policies and investments during the next thirty years, the United States could be better positioned to achieve its complementary economic, energy security, and environmental goals," said Claussen. The Pew Center now plans to turn to an exploration of what ought to happen, now and in the future, towards developing a national vision of policies, strategies and investments that will help achieve these goals.

Solutions Series
This report is part of the Solutions series, which is aimed at providing individuals and organizations with tools to evaluate and reduce their contributions to climate change. Other Pew Center series focus on domestic and international policy issues, environmental impacts, and the economics of climate change.

###

The Pew Center was established in May 1998 by The Pew Charitable Trusts, one of the United States' largest philanthropies and an influential voice in efforts to improve the quality of the environment. The Pew Center is an independent, nonprofit, and non-partisan organization dedicated to providing credible information, straight answers, and innovative solutions in the effort to address global climate change. The Pew Center is led by Eileen Claussen, the former U.S. Assistant Secretary of State for Oceans and International Environmental and Scientific Affairs.

Assessment of EIA Analysis of the Climate Stewardship Act

See Summary for a quick overview of the EIA analysis.

Introduction

On July 3, 2003 the Energy Information Administration (EIA) of the U.S. Department of Energy released its economic analysis of Senate Bill 139: the Climate Stewardship Act of 2003. This bill was introduced by Senators John McCain and Joseph Lieberman on January 9, 2003. S.139 represents the first economy-wide “cap-and-trade” bill that reduces greenhouse gas (GHG) emissions primarily through limiting the amount of emissions from key economic sectors and providing flexibility in obtaining GHG reductions through emissions trading and sequestration (or storage) of carbon. The program would apply to greenhouse gas emissions from major sectors – electric utilities, transportation, and industry-- covering roughly 80% of U.S. emissions.

This analysis discusses key features of EIA’s National Energy Modeling System (NEMS) model and relevant assumptions used by EIA in analyzing the costs of S.139. Modeling an economy-wide greenhouse gas trading program presents real challenges. Model results can provide important insights regarding policy design features and their implications for costs but should not be viewed as definitive predictions of future costs. Historically, advance projections of costs of many environmental programs – particularly market-based programs such as the SO2 acid rain trading program – have been much higher than the actual costs of implemented programs. Consumers of any modeling results should understand how model structure, inputs, and assumptions drive the results – which in this case focus only on the costs, but not the benefits, of climate change policy. (For more information on key drivers of cost estimates in modeling, see An Introduction to the Economics of Climate Change Policy.

EIA’s analysis of S.139 using its (NEMS) model is just one of a number of efforts by a range of organizations to model S.139. In addition to the EIA analysis, both MIT and NRDC have released their own review of the potential costs of S.139, and these results are compared with EIA’s below. In addition, the Center is working with Dr. Dale Jorgenson of Harvard University and his colleagues to evaluate possible costs of the bill.

The Center's Director of Policy Analysis, Vicki Arroyo, served as a peer reviewer on the EIA effort. She and other reviewers provided input to EIA, and while some of those comments have been reflected in their analysis (e.g., deleting a side case with zero offsets and including one with a higher limit on offsets), many were not addressed. The discussion below reflects comments submitted during the review process and notes how the cumulative effect of many factors – both structural features of NEMS and assumed inputs – serves to drive the projected costs higher than what they are likely to be.

Characterization of the EIA NEMS Model

As a macro-energy model, NEMS is a useful tool to analyze an economy-wide greenhouse gas trading program. Macro-energy models solve for the most promising solutions to achieving reductions in greenhouse gas emissions, and program costs are calculated from the economy-wide impacts of higher fossil fuel prices, altered productivity, and changing competitive advantages of firms and sectors. However, the trade-off is that macro-energy models lose detail on new technologies, characteristics of individual sectors and opportunities for energy efficiency. As a result, they often miss available opportunities to minimize program costs.

EIA’s NEMS model is considered a conservative macro-energy model and has often produced cost projections in the top quarter of modeling comparisons (for example, in the Energy Modeling Forum’s modeling comparison of the U.S. and the Kyoto Protocol). 1 Some NEMS features yielding higher projected costs are listed below.

Substitution by Firms and Consumers

  • NEMS aggregates all non-energy sectors and thus ignores opportunities for process improvements and substituting energy and material inputs.
  • NEMS assumes a “putty-clay” formation of capital investments; that is, there is complete flexibility before investment in energy capital and no flexibility once that facility has been built. This is important in shorter-term reductions where capital is assumed to be retired rather than retrofitted.
  • NEMS assumes a starting point of full and efficient employment of capital and labor; thus there are no existing low-cost opportunities for energy efficiency.
  • NEMS allows increased use of existing or new energy technologies into the energy mix, however, these opportunities are limited by specific resource and infrastructure constraints. If a technology requires a regulatory change to realize its potential, NEMS will not include it.

Technological Change

  • NEMS only chooses from a predetermined menu of technologies; thus while these technologies may improve with greater market penetration, no new technologies beyond the existing set can be used.

Inclusion of Benefits of Climate Change Policies

  • NEMS does not consider the benefits of policy in terms of avoided climate change impacts.
  • NEMS does not consider ancillary benefits of reducing local air pollution, addressing energy security etc.

Baseline Estimates of Population, GDP, Energy Use and Hence Emissions

  • NEMS projects strong economic growth for the U.S.
  • NEMS projects continued rapid expansion of carbon-intensive sources, especially electricity from coal and petroleum-based transportation.
  • NEMS includes military and bunker (aircraft and shipping) emissions, thus raising the baseline of projected “business-as-usual” (BAU) emissions.
  • NEMS has a pessimistic projection on the available supply (low) and price (high) of North American natural gas; this heavily influences cost projections as natural gas is a major transition fuel to a lower carbon economy.

Policy Regime Considered

  • The discussion of EIA’s assumptions below details the treatment of important variables including the extent of international emissions trading, inclusion of non-CO2 GHGs, use of sequestration, and methods of revenue recycling to lessen impacts on specific user groups or sectors. All of these mechanisms can reduce the cost impacts of reducing greenhouse gas emissions

Key Parameters of McCain-Lieberman S.139

The key characteristics of the S.139 GHG cap-and-trade program are:

  • All six greenhouse gases (GHGs) are covered, including emissions from the electricity, industrial and transportation sectors.
  • Covered entities for the transportation sector are upstream fuel producers/importers, while covered entities in the electricity and industrial sectors are all downstream firms responsible for more than 10,000 tons of carbon equivalent (TCE) per year.
  • Prescribed targets are Phase 1 -- year 2000 emission levels by 2010, and Phase 2 -- year 1990 emission levels by 2016.
  • The assumed “business as usual” or “base case” (without policy) specified in the bill is based on EPA’s U.S. Climate Action Report.
  • Flexibility mechanisms (international emission trading, carbon sequestration and reduction opportunities in non-covered sectors) are permitted for 15% of an entity’s required emissions allowances through 2010, declining to 10% through 2016.

    For international emission trading, the bill specifies that only pre-certified programs (e.g., the EU emissions trading scheme) can sell permits to the U.S.
  • Early action credits – firms that pursue early emissions reductions can use flexibility mechanisms to meet 20% of required reductions through 2016.
  • Banking of credits is permitted, allowing for early over-compliance to generate credits for use later in the program
  • Method of permit allocation is unspecified in the bill.
  • While the bill allows for revenue recycling via a Climate Change Credit Corporation, the methodology and amount is unspecified.

Reference Case

The first driver of the costs of reductions is the assumed “business as usual” or “base” case – that is, what emissions would have been in the absence of S.139.

The base case in NEMS assumes strong economic growth (3% per year, despite continuing economic uncertainty), and a continued reliance on fossil fuels with high carbon emissions. In particular, a significant increase of coal for electricity production is forecast, with generation from coal predicted to rise by 32% by 2025 relative to year 2000. In addition, continued expansion of transportation is expected, with petroleum consumption rising by 46% by 2025 relative to year 2000. Additional emissions increases are expected in the industrial, commercial and residential sectors. Despite these high baselines, electricity and fuel prices remain low in the base case, further exaggerating the relative impact of S.139 when costs are imposed.

The future supply -- and hence price -- of natural gas is a crucial component of the costs of controlling GHGs since natural gas is expected to be the primary transition fuel to a lower carbon economy. EIA assumes a tight supply under increased demand for natural gas in their 2003 Annual Energy Outlook, yet in its analysis of S.139, these estimates have been revised to be even higher based on the short-term indications from EIA’s recent Monthly Energy Reviews. This assumption represents a very pessimistic long-term assessment of North American natural gas resources, especially regarding the price level at which new “back-stop” natural gas resources would become available – e.g., from Northern Canada and Alaska, deep water in the Gulf of Mexico, and unconventional gas resources.

In addition, no new policy measures -- including those aimed at reducing local air pollution, improving energy security, developing new technology, promoting hydrogen, or liberalizing the electricity market -- are included in EIA’s analysis. Enactment of these complementary policies is likely to reduce the costs of controlling greenhouse gas emissions over the time period studied (to 2025).

EIA’s Primary Analysis of S.139

In EIA’s primary analysis run of S.139, a number of additional input assumptions drive up the costs of controlling GHGs under this bill. These can be divided into two main categories:

Input data and use of flexibility mechanisms for lower cost reductions:

  • A conservative assessment of available international emissions trading, due to the bill’s requirement only to trade with certified programs, hence excluding bilateral CDM opportunities.
  • High discounting of international and sequestration offsets.
  • Pessimistic assumptions of early action by firms, and hence very limited use of the increased 20% allowance for flexibility mechanisms (the equivalent assumption being employed is that only 1/5th of firms take early action).
  • Lack of inclusion of certain non-CO2 GHGs, especially methane from natural gas systems and smaller landfills.
  • Lack of inclusion of CO2 emissions from non-energy sources.
  • Use of EIA’s CO2 emissions from fossil fuel combustion rather than EPA’s estimates (as specified in S.139), resulting in a greater required reduction to meet target levels.

Technology penetration and energy efficiency opportunities:

  • Lack of foresight in the residential and commercial sectors despite publicity surrounding GHG reduction policies that would accompany debate over and passage of S.139.
  • Limited and constrained use of key technologies that require institutional and regulatory changes, especially combined heat and power (CHP), distributed generation (DG), buildings integrated photo-voltaics (BIPV), and wind.
  • Lack of consideration of efficiency step changes (e.g., widespread penetration of hybrid vehicles) in the transportation sector, and resulting small improvements in efficiency despite a large price signal (for example, an average efficiency increase of only 1.3 mpg is projected by 2025, to only 21.8 mpg).
  • Projected low level of energy efficiency improvements of products in the commercial and residential sectors resulting from the program. This lack of significant efficiency improvement is despite a significant price signal and is not well-supported by this analysis.
  • These factors combine to give extremely low levels of end-use energy efficiency in all sectors despite a significant and sustained price signal.

As a result of the above assumptions, the majority of emission reductions in this analysis come from anticipated fuel switching in the electricity sector. This leads to higher prices, premature reduction of existing energy equipment, and hence higher costs of the bill.

EIA Sensitivity Analyses of S.139

The report details a number of sensitivity cases in addition to the primary case. Many of these cases were specified by the Senators directing EIA to undertake the analysis. In some cases undertaken by EIA, the specified cases diverged from the recommendations of the reviewers.

  • A further tightening of natural gas supply resulting in even higher costs, despite the reference case already having higher natural gas prices than EIA’s AEO 2003. Given the huge uncertainties over longer term natural gas supply, a lower natural gas price case should have been included.
  • Prohibiting inclusion of both geological sequestration and advanced nuclear technologies. While both technologies are permitted under the bill itself, EIA was directed to exclude both options. Combined with tight natural gas supply and other technology restrictions, this assumption serves to dramatically drive up projected costs.
  • Zero banking of credits despite its availability under the bill and experience of cost reductions from banking under the SO2 acid rain program.
  • While EIA did include a high technology case, it only considers improvements in consumer products and electricity technologies, but does not cover advances in the natural gas production and distribution industries nor does it include a range of potentially significant new technologies (e.g., IGCC with sequestration). In addition, the improved technologies are also assumed to be available in a high tech reference case rather than be induced by the climate policy. One would expect additional technological change to be induced given the sustained price signals that EIA calculates for this bill.
  • Finally, the sensitivity case on increased use of offsets or flexibility mechanisms (e.g., participation of non-covered sectors, international trading, and sequestration) is very illustrative. Increasing the allowable offsets to 50% of required reductions shows the significant cost reductions from allowing greater flexibility in meeting the target. ($64/tC [$17/tCO2] and $174/tC [$47/tCO2] if 50% flexibility is allowed in years 2010 and 2025 vs. $79/tC [$22/tCO2] and $221/tC [$60/tCO2] under the bill’s current caps).
  • However, in the additional sensitivity case with international trading prices assumed to be halved, the bill’s cap on offsets results in most offset reductions coming from domestic non-CO2 and sequestration sources.

Discussion of Results

The cost projections generated by the EIA analysis reflect the input assumptions and model structure of NEMS, and hence are higher than costs are likely to be under the bill as proposed.

Impacts on GDP are reported at a loss of 0.4% by 2025. EIA also reports a higher loss in “real GDP” (down to 0.7% in 2015 before converging with “potential GDP” at 0.4% loss by 2025). This reflects EIA’s assumptions regarding imperfect responses in interest rates and other macro-economic variables. However, this compounded loss in GDP represents only a very small change in annual economic growth rates. The S.139 program would only reduce annual GDP growth in 2001-2025 from 3.04% to 3.02%. That is, rather than growing at 3.04% through 2025, curtailing greenhouse gases under this legislation will result in the economy growing slightly less – at 3.02%. As EIA notes in the Executive Summary, “…other factors that drive the U.S. economy, such as labor force and productivity growth are likely to play a larger role than decisions regarding the enactment of S. 139 in determining the size of the U.S. economy in 2025.”

Specific sectoral impacts are projected to be more pronounced, reflecting the presumed high baseline. The restrictions on natural gas supply, the low level of energy efficiency improvements in the face of sustained price signals (especially in transportation), and low penetration of key technologies that require institutional and regulatory changes for full market penetration, mean that the overwhelming reductions come from fuel and technology switching in the electricity supply industry. As a result, the energy price increases are expected to be significant: e.g., by 2025 prices are projected to increase 27% for petroleum, 46% for natural gas (above an already high base gas price), 475% for coal (because coal is currently very cheap and has more carbon content), and 46% for electricity. In contrast, the MIT analysis of S.139 has far more efficiency improvements, significantly more coal use coupled with carbon sequestration and accelerated penetration of alternative energy supply technologies, including distributed generation and combined heat and power plants. MIT results anticipate a falling price for natural gas under GHG reductions, as higher efficiency and use of alternative fuels weakens demand for natural gas.

Comparison to Other Analyses

Although additional analyses of S.139 are forthcoming, results of EIA’s NEMS runs can be compared with the previously released MIT study (using their EPPA model). As discussed above, a number of different input assumptions in the MIT analysis lead to different principal paths for greenhouse gas reductions, resulting in very different carbon prices and economic impacts. This is illustrated in the table below. Also shown are the results from an analysis for NRDC by the Tellus Institute, which adapts the NEMS model using a more optimistic assessment of opportunities for energy efficiency and the diffusion of lower carbon technologies. In addition, the NRDC analysis includes complementary policies, such as mandatory improvements in vehicle fuel efficiency, controls on local air pollutants and easing of regulatory restrictions that limit combined heat and power technologies.

 EIAMIT

MIT
(phase 1 only)

NRDC
Carbon Price in $/tC [$/tCO2]201079 [22]62 [17]31 [9]29 [8]
2015119 [32]81 [22]40 [11]66 [18]
2020178 [49]103 [28]52 [14]81 [22]
Welfare % cost2010-0.30%-0.07%-0.02%-
2015-0.70%-0.09%-0.02%-
2020-0.40%-0.11%-0.02%-
Total Welfare cost (billion $)2010-26.9-6.1-1.7-
2015-72.8-9.1-2.0-
2020-48.6-13.1-2.4-
Cost per Household ($)2010228521553
20155927517-124
202038310319-379

Notes:
The table shows carbon prices, welfare costs and costs per household.
All prices are in $2001.
MIT refers to scenario #9 in that analysis.
Welfare in this case measures lost consumption (or income) by consumers (as leisure effects are ignored). The NRDC analysis does not derive costs per household from overall welfare impacts, instead simply reporting net resource cost changes. Consumption is the major component of GDP (the other components being investment, government expenditures and imports/exports balance). Welfare is a good measure of actual impact on the population.
In year 2000, US GDP was around $10 trillion with consumption at $6.3 trillion.
In year 2000, there were 108 million households in the US with a median income of $41,000, by 2020, there is projected to be 127 million households with a median income of $61,000.

MIT’s analysis of S.139 finds carbon prices to be significantly less for both phases of the bill, including offsets. This reduced impact is even smaller when the model calculates the effects of higher energy prices on overall economic performance and on an individual household basis. Note that if only Phase 1 of S.139 is enacted, the anticipated economic impacts are very small. NRDC’s emphasis on greatly improved energy efficient technologies leads to net benefits from S.139.

Conclusion

The EIA analysis represents an ambitious attempt to provide insights into possible costs related to S.139; however, it should be thought of as an upper bound of likely costs. A more technologically rich and flexible model accompanied by more realistic assumptions regarding modeling inputs would yield lower cost projections.

 


1 See Weyant J. (ed) 1999, The Costs of the Kyoto Protocol: A Multi-Model Evaluation, Special Issue of the Energy Journal

Summary of EIA Analysis of the Climate Stewardship Act

On July 3, 2003, EIA released an economic analysis of S. 139: the Climate Stewardship Act introduced by Senators John McCain and Joe Lieberman. The EIA analysis was undertaken at the request of Senator James Inhofe, with additional analyses requested by the bill’s sponsors.

The Center has examined the EIA analysis and believes that the model’s structure, combined with unrealistic input assumptions, results in unrealistically high cost projections. Key factors driving up the costs in the EIA analysis include:
Structural issues with EIA’s model, including inflexibility in altering existing equipment (capital stock), limited ability to consider improvements in technology driven by regulatory changes, and lack of existing low-cost energy efficiency opportunities.

Assumptions regarding natural gas supply (low) and price (high), relatively high expectations for “business as usual” emissions growth (including presumed rapid expansion of coal-powered electricity), and limited energy conservation measures even with a sustained price signal.

Additional sensitivity cases (many pre-determined by the requests of the Senators soliciting EIA’s analysis) that also generally serve to drive up projected costs. These include cases with even higher natural gas prices and cases limiting certain advanced low-emitting technologies for the generation of electricity.
A more technologically rich and flexible model accompanied by more realistic assumptions regarding modeling inputs would yield lower cost projections.

See our full Assessment of EIA Analysis of the Climate Stewardship Act.

A Vision for a Climate-Friendly Future

A Vision for a Climate-Friendly Future

Remarks by Eileen Claussen
President, Pew Center on Global Cliamte Change

Air & Waste Management Association Annual Conference and Exhibition

June 23, 2003

Thank you very much.  It is a pleasure to be here in San Diego.  And I thank the Air & Waste Management Association for inviting me here today. 

While looking at the website for this conference, I was surprised to see that the plenary presentation this morning coincides with a recreational opportunity for attendees at the-- conference -- that is, a visit to several of San Diego’s historical sites that is billed as the “step back in time tour.”  Let me say, first, that I appreciate the fact that so many of you opted out of that event, preferring to remain in the here and now. 

In my speech today I intend to offer a tour of both the past and the future. I want to talk about the need for a vision of what the world might look like 50 years from now -- what the world must look like -- if we finally accept our responsibility to protect the global climate. And I want to talk about how the lessons from the past can help us get there.

Let me start with a brief “step back in time tour” of my own,  and reflect for a minute on some advice that I was given when I was working on waste management issues back in the 1970’s.  I can clearly remember being berated by a vice president of a major US corporation for my foolish ideas on reuse and recycling.  After the critique was over, the VP went on to offer me some counseling.  “Eileen,” he said, “be careful that you don’t try to become a monument.  Monuments attract pigeons.”  Well, I didn’t listen to that advice, and while the pigeons are sometimes a problem, I would be delighted if pigeons were all I had to worry about. 

Unfortunately, what I do worry about is whether we have what it takes to create the vision of where we need to be, and then achieve it – whether we are all willing to take the risk of becoming monuments.  Because the task at hand is not an easy one:  we must wean ourselves away from our reliance on fossil fuels, and begin in earnest to develop the technologies and the alternative energy sources that will help us achieve real and steady reductions in worldwide emissions of the greenhouse gases that cause climate change. 

There are a lot of good things happening right now.  Individuals, companies and governments are taking important and worthwhile steps to address this problem, and I want to talk with you a little bit about what they are doing.  But what is happening now is not nearly enough.  And the priority looking ahead must be to marry a long-term vision of a climate-friendly future with the short-term strategies that will get us there.

In this, we must remember the words of Eleanor Roosevelt: “The future is literally in our hands to mold as we like. But we cannot wait until tomorrow. Tomorrow is now.”

Of course, the reason we are having this discussion -- and the reason I am laying out this vision -- is that we have a real problem.  The earth’s climate is undergoing important and potentially hazardous changes, and human activities are largely to blame.  Of this there is no doubt.  Even our President (previously referred to as skeptic-in-chief), revised his prior assumptions after he assigned a committee of the National Academy of Sciences to look into the matter -- and they came back to him reporting that, and I quote "GHG's are accumulating in Earth's atmosphere as a result of human activities, causing surface air temperatures and subsurface ocean  temperatures to rise.  Temperatures are, in fact rising.  The changes observed over the last several decades are likely mostly due to human activities."  The report goes on to say that we can't exclude the possibility that natural variability has contributed as well  -- but the main point remains - the earth is warming, and humans must accept some responsibility for that warming.

How significant is this warming trend?  The earth’s temperature has always fluctuated, but ordinarily these shifts have occurred over the course of centuries or millennia, not decades.  Over the last century, we have seen a one-degree increase in global temperatures.  And the increase appears to be accelerating.  The 1990s were the hottest decade on record.  The last five years were among the seven hottest on record.  Scientists project that over the next century, average global temperature will rise between two and ten degrees Fahrenheit.  The higher-end figure of ten degrees would be the largest swing in global temperature since the end of the last ice age 12,000 years ago. 

What will be the effects of this warming?  In the short term, there will be both winners and losers as farms and forests, for example, become more productive at some latitudes, but less productive at others.  In the long term, though, any possible benefits from global warming will likely be far outweighed by the costs -- and the consequences may be irreversible.  Consequences such as increased flooding and increased drought, as well as extended heat waves, more powerful storms, and other extreme weather events.  And I have not even mentioned the problem of rising sea level, which has potentially far-reaching effects on coastal areas throughout the world.

Global warming, in other words, is not an idle concern.  Unfortunately, however, it is a concern that has become overly politicized and polarized, and the main reason for this is that addressing this issue effectively requires us to change.  There is no way around it.  Responding to climate change will fundamentally alter the way we meet many of our most basic needs. 

But a lot of people don't like change; change is hard, it requires effort, and it makes things, well…different.  Many would rather keep the status quo.  Those who are against the changes that are needed, argue that they would imperil our economy and our way of life.  But let me tell you something: those who oppose practical steps to deal with the issue of climate change are misguided, because we can address this issue effectively while still growing our economy. In fact, if we fail to address it, the costs are likely to be greater.  Our emissions will have grown; the amounts we will have to reduce will be greater; the time available to make these reductions will be shorter; and the costs for damage control and remediation will increase.   In making this argument I am not suggesting that taking the necessary steps will be either free or easy.  But I believe strongly that with a long-term vision of where we want to go, we can design reasonable, cost-effective strategies to get us there -- one step, one decade at a time. 

Looking 50 years ahead, the questions then become: How will we power our economy?  How will the nations of the world -- developing and industrialized countries alike -- achieve reductions in their greenhouse gas emissions while at the same time achieving their goals for growth?  And, at a more every-day level, how will we get to work?  What kind of office buildings will we work in?  What kind of cars and trucks will we drive?  And, if we plug in our hot tubs, our refrigerators, and our TVs and computers, where will the power come from? 

This isn’t the Jetsons of cartoon fame that I am talking about -- with people rocketing around in space cars and taking ultra-sonic showers.  Rather, it is real life.  And there are real changes that need to happen -- and that can happen -- if we give this issue the attention it so desperately deserves. 

And now, if you will permit me, I would like to give you a second little “step back in time tour.”  The location isn’t San Diego in 2003 but Montreal in 1987.  That was the place and the time, as all of you know, when the nations of the world stepped up to the challenge of ozone depletion and negotiated a treaty, The Montreal Protocol, to begin to phase out the production and use of ozone-depleting chemicals. 

In the years leading up to 1987, there was a great deal of skepticism about whether the depletion of the ozone layer was indeed a problem -- and, more importantly, whether it was a problem we could solve.  At first, many people denied that the problem existed, but then the argument shifted to one where many in industry said that replacing the CFCs that were causing the problem was impossible, particularly in the short term. These chemicals, it was said, are in such wide use in everything from refrigerators to aerosol antiperspirants that there is no way that society is going to be able to do without them.  But then governments began to work seriously on a framework for action, and industry initiated a major effort to work on alternative chemicals and processes.  Soon it became clear that we could develop less harmful substitutes.  The Montreal Protocol was agreed and then strengthened over time as industry became more and more comfortable with alternatives.  And the rest is history.  

I tell this story because it is about reaching for a vision that might not seem immediately attainable but that can indeed become reality with a lot of hard work and imagination.  Fast forward to today, and you see that getting rid of CFCs has not stood in the way of our ability to keep our yogurt cold or our ability (indeed, our need) to use antiperspirant -- and for that we can all be very thankful.  We were able to change to protect the planet.  And, today, we need to start thinking about the changes we have to make in order to protect the climate. 

Do we have a climate-friendly vision for the future?  I believe we have some of the pieces, but are far from having a complete vision.  Let’s look at what the Bush Administration has offered.  It seems to consist of three parts:  a greenhouse gas intensity target for the next decade; a strategy of voluntary measures to achieve that target; and a set of research efforts to assist in bringing about long-term technological change. 

There are a number of fundamental problems with this approach.  First, rather than establishing an absolute target for emission reductions – as many of the companies we are working with at the Pew Center have done and as the international community has done with the Kyoto Protocol, the Bush administration’s climate strategy sets a voluntary “greenhouse gas intensity” target for the nation.  The idea is to reduce the ratio of greenhouse gas emissions to U.S. economic output, or GDP.  But the biggest problem with the White House target – an 18 percent reduction in greenhouse gas intensity by 2012 – is that it would allow actual emissions to grow by 12 percent over the same period.

What’s more, the Administration’s strategy relies entirely on voluntary measures.  This despite the fact that U.S. climate policy has consisted primarily of voluntary measures for more than a decade.  And what have these voluntary measures achieved?  As of 2001, U.S. greenhouse gas emissions were up 12 percent over their 1991 levels. 

And, finally, while the Administration is putting significant effort into long-term research and development, it is not tied to specific longer term emission reduction goals. It is absolutely clear that technological research and development must be a critical element in any vision of a climate-friendly future.  It is also clear that without a specific, binding target that creates the demand for these new technologies, we are unlikely to succeed in our efforts to protect the global climate. 
   
We can do better than that.  We have to do better than that.  In the months and years ahead, we as a nation need to think more seriously about the short- and long-term steps we should be taking to reduce our contribution to climate change.  

And we can learn from many of the promising activities that are taking place all around us starting with the efforts of the members of the Pew Center’s Business Environmental Leadership Council.   The council’s 38 members represent nearly 2.5 million employees and have combined revenues of $855 billion.  They include mostly Fortune 500 firms, and they are committed to economically viable climate solutions.  What are they doing?  

  • Alcoa, for example, is developing a new technology for smelting aluminum that, if successful, will allow the company to reduce its greenhouse gas emissions to half their 1990 levels over the next nine years.  
  • Similarly, Shell recently met its target to reduce greenhouse gas emissions by 10 percent from 1990 levels -- and it did this in part by revamping its disposal of the waste gases resulting from oil and gas production. Shell also is planning a long-term transition into the renewable energy market, having invested $1 billion in renewables to date.
  • Shell is not the only company we are working with that is venturing into new markets or shifting its business focus.  ABB is a $25 billion Swiss business-to-business supplier that has divested itself of traditional, large-scale power generation businesses.  Instead, the company now supplies distributed energy solutions, such as combined heat and power technology, fuel cells, microturbines, and wind power plants.  
  • And then there is the case of Air Products and Chemicals, Inc., which entered into an agreement to provide the waste stream from one of its chemical plants for use as a fuel source for a neighboring company.  Air Products and Chemicals also has numerous operations that recover hydrogen molecules and other waste gases from the industrial processes of other companies.  Not only are these waste gases used as a fuel source for cogeneration plants, but the recovery of hydrogen reduces the need for natural gas to create hydrogen anew -- creating a double climate benefit.

All of these are important developments—and they show how increasing numbers of leading companies see a clear business interest both in reducing their emissions and in helping to shape a climate-friendly future. 

Even more encouraging is the fact that elected leaders in the states are working to shape that future now -- and they are doing it, in part, by recognizing that climate change is an air and waste management issue.

  • Massachusetts, for example, has established a multi-pollutant cap requiring six older power plants to reduce their CO2 emissions by 10 percent. 
  • In neighboring New Hampshire, lawmakers have adopted a similar, multi-pollutant approach in an effort to require the state’s three fossil fuel-fired power plants to stabilize their CO2 emissions at 1990 levels.  
  • Elsewhere, states have developed innovative waste management programs that will protect the climate.  These include a mandatory statewide recycling program in New Jersey that helped the state avoid 8.7 million tons of greenhouse gas emissions from 1990 to 1995; and a program in Missouri that provides financing for a project to capture methane from a 70-acre sanitary landfill for use as fuel for the boilers of a local high school. 

That is what I call vision.  And it is a quality that is desperately needed as the United States sets out in the years ahead to reduce greenhouse gas emissions nationwide.  Clearly, we have a ways to go.  How far?  Well, right now, we have a national climate strategy that says it is fine and good for our emissions to continue to grow.  So obviously the road ahead is a rather long and probably a winding one.  But first we must decide what the future should look like.

Let's take a look at a  couple of specific sectors, the power sector and the transportation sector -- which together account for about 2/3 of our nation's energy use.

How do we envision the power sector?  With no silver bullet on the horizon, we can  expect a future with greater use of natural gas (if we can increase supply and meet our infrastructure needs); with a steadily increasing use of renewables (and the progress of wind energy over the last decade should give us a glimmer of hope); with an increased emphasis on distributed generation and combined heat and power; with nuclear at least maintaining its current level of electric generation; and finally with coal, if we are able to master carbon capture and sequestration and make it economically viable.  

Meeting the challenge of the transportation sector will not be easy, but the rewards will yield energy security dividends as well as environmental ones. If we start now by investing and deploying  existing technologies and investments, it is possible to reduce carbon emissions by about 20 to 25% by 2015 and 45 to 50% by 2030, compared to business as usual.    The transportation sector is a perfect example of the need for both short and longer-term efforts.  It typically takes 10-15 years to turnover a vehicle fleet, so if we start making new vehicles more efficient today,  it will take more than a decade for these efficiency gains to be realized in all vehicles on the road.  At the same time we should be working toward the low-carbon transportation future that we ultimately need, with advanced hybrids, advanced diesel, hydrogen fuel cells and the infrastructure that will be needed to support hydrogen. 

But simply having a vision gets you nowhere.  You have to be able to achieve it.  Starting right now, we have to identify the steps necessary to transition to a new, climate-friendly economy.  We know that there are short-term strategies that significantly reduce greenhouse gas emissions without radical changes in technologies or lifestyles.  These are the low-hanging fruit in the effort to create a climate-friendly future: the efficiency and management improvements that will save money and reduce emissions.    And we have a vision of our longer-term needs.    But most important, we know that we cannot achieve our vision for the future, or even take advantage of the myriad of shorter-term improvements that are environmentally and economically advantageous without a strong national policy. 


This policy must be focused on four specific areas: 

  • One: We need to create a system where reporting and disclosure of greenhouse gas emissions becomes the rule -- at the very least, for major sources -- and where companies that are acting now to reduce their emissions are assured of credit under future mandatory regimes.
  • Two: We need to use a combination of standards, tax credits and other incentives to expand the use of energy-efficient motor vehicles, appliances and buildings; renewable energy; and alternative fuels and technologies.  We need to send the market the right signals in order for change to happen.
  • Three: We need to expand our natural gas supply and infrastructure and promote advanced coal technologies with carbon capture and disposal.
  • And four: We need to adopt a comprehensive national strategy that couples mandatory reductions in emissions with flexible, market-based approaches such as emissions trading.

Just last month, the Pew Center released a report taking a detailed look at six diverse emissions trading programs.  The aim was to draw general lessons for the development of trading programs for greenhouse gases.  And the conclusion?  A so-called “cap-and-trade” program -- which couples trading with a mandatory goal for reducing emissions -- would be an especially attractive way of reducing the U.S. contribution to climate change. Among the reasons: trading allows for greater efficiency than other approaches, given that the cost of reducing emissions varies widely by source.

Of course, we already know how a market-based strategy such as trading can contribute to environmental progress.  We have seen it happen.  The year in this case was 1990, and the place was Washington, D.C., where lawmakers, as part of the Clean Air Act Amendments passed that year, set out to mandate significant reductions in emissions of sulfur dioxide and nitrogen oxides from electric utilities.  The results of this program are clear – the goals have been met, and the costs have been far less than anticipated.  

The same kind of cap-and-trade system can achieve the same kind of progress in our effort to protect the climate.  It is this kind of system, in fact, that is at the heart of national climate change legislation introduced earlier this year by Senators Joe Lieberman and John McCain.  This landmark measure for the first time brings together several features that would be critical to the success of a national climate change strategy.  The bill would establish ambitious and binding targets for reducing U.S. greenhouse gas emissions.  Equally important, it would provide companies with the flexibility to reduce emissions as cost-effectively as possible – thanks to the creation of a rigorous nationwide system allowing emissions trading, the provision of credit for carbon storage, and the ability to use credits earned abroad  Last but not least, the bill would recognize those reductions that are being made now by the companies that are taking the lead on this issue and provide additional flexibility for these early actors. 

Of course, the Lieberman-McCain measure has no real chance of becoming law any time soon. But it does give us a starting place on the policy vision that we so desperately need. 

As we begin building a workable strategy to reduce U.S. emissions, we can at the same time begin demonstrating leadership internationally. As the producer of fully one-fourth of worldwide greenhouse gas emissions, we have to show the world, first, that we are stepping up to this problem domestically, and, second, that we can contribute in important and substantive ways to the development of a global framework for action. 

Despite the Bush administration’s rejection of the Kyoto Protocol, it is in the United States’ best interests to forge an effective, long-term international climate agreement – one ensuring that all major emitting countries do their fair share to meet this challenge.  Whether you support it or not, the Kyoto Protocol is a reasonable first step and provides an important framework for the continuing evolution of the world’s energy mix. 

But in the same way that the United States should be guided by a long-term vision as it works domestically to protect the climate, so too must the global community be looking beyond Kyoto.  Because an agreement that’s going to work – an agreement that can bring in not only the United States, but developing countries as well – will in all likelihood be something other than Kyoto.  And it’s going to take some time to get there.

The more immediate challenge, though, is here at home.  And the longer U.S. policy makers wait to address the climate issue in a serious way, the greater the risk to the climate and to America’s standing in the world. 

A “step back in time” is important for learning what works.  But Eleanor  Roosevelt was right: “Tomorrow is now.”  And we need right now to be shaping a vision of a better tomorrow for our climate, for our economy, and for all of us. We need to get on with solutions.

Thank you very much. 

Legislation in the 107th Congress Related to Global Climate Change

During the 107th Congress (2001-2002), nearly 70 bills, resolutions, and amendments specifically addressing global climate change and greenhouse gas (GHG) emissions were introduced. The proposals ranged from GHG emission limits to carbon sequestration. Additional measures focused on decreasing America's dependency on foreign oil by increasing the use of renewable energy resources.

The bills, resolutions, and amendments specifically addressing global climate change and GHG emissions introduced in the 107th Congress are listed here in the following categories:

Full list of Bills:

GHG Emission Limits

S.556: The Clean Power Act, which requires reductions of CO2, SO2, NOX, and mercury emissions from electric powerplants. CO2 emissions are reduced to 1990 levels by 2008 (as reported by committee). Sponsor: Sen. James M. Jeffords (I-VT) (22 cosponsors) - Action: 6/27/2002 Reported favorably by the Senate Environment and Public Works Committee with an amendment in the nature of a substitute by a vote of 10 - 9.

S.1131: The Clean Power Plant and Modernization Act, which requires reductions of CO2, SO2, NOX, and mercury emissions from electric powerplants.
Sponsor: Sen. Patrick J. Leahy (D-VT)

S.3135: The Clean Air Planning Act, which requires reductions of CO2, SO2, NOX, and mercury emissions from electric powerplants. CO2 emissions are stabilized at 2005 levels by 2008 and reduced to 2001 levels by 2012.
Sponsor: Sen. Thomas R. Carper (D-DE) (3 cosponsors)

H.R.1256: The Clean Smokestacks Act, which requires reductions of CO2, SO2, NOX, and mercury emissions from electric powerplants. CO2 emissions are reduced to 1990 levels by 2007.(House companion of S.556.)
Sponsor: Rep. Henry A. Waxman (D-CA) (133 cosponsors)

H.R.1335: The Clean Power Plant Act, which requires reductions of CO2, SO2, NOX, and mercury emissions from electric powerplants.
Sponsor: Rep. Thomas H. Allen (D-ME) (22 cosponsors)

H.R.2116: The Great Smoky Mountains Clean Air Act, which requires reductions of CO2, SO2, NOX, and mercury emissions from Tennessee Valley Authority electric powerplants.
Sponsor: Rep. Charles H. Taylor (R-NC) (2 cosponsors)

H.Res.117: A House resolution which expresses the sense of Congress that the United States should develop, promote, and implement policies to reduce emissions of fossil fuel generated carbon dioxide with the goal of achieving stabilization of greenhouse gas emissions in the United States at the 1990 level by the year 2010.
Sponsor: Rep. Barbara Lee (D-CA) (66 cosponsors)

back

GHG Emission Reporting

S.1333: The Renewable Energy and Energy Efficiency Investment Act of 2001, which, among other things, requires electricity generators to disclose their carbon dioxide emissions to potential consumers.
Sponsor: Sen. James M. Jeffords (I-VT) (5 cosponsors)

S.1716: The Global Climate Change Act of 2001, which, among other things, establishes a mandatory greenhouse gas reporting and disclosure program.
Sponsor: Sen. John F. Kerry (D-MA) (4 cosponsors)

S.1766: The Energy Policy Act of 2002, which, as part of a comprehensive energy bill, establishes a mandatory greenhouse gas reporting and disclosure program. (Also includes the main provisions of S.1008, which requires development of a U.S. Climate Change Response Strategy.)
Sponsor: Sen. Thomas A. Daschle (D-SD) (6 cosponsors)

S.1781: The Emission Reductions Incentive Act of 2001, which establishes a voluntary registry of greenhouse gas emissions reductions.
Sponsor: Sen. John McCain (R-AZ) (1 cosponsor)

S.1870: A bill to amend the Clean Air Act to establish an inventory, registry, and information system of U.S. greenhouse gas emissions to inform the public and private sector concerning, and encourage voluntary reductions in, greenhouse emissions.
Sponsor: Sen. Jon Corzine (D-NJ) (2 cosponsors)

S.2815: The Clear Skies Act, which requires reductions of SO2, NOX, and mercury emissions from electric powerplants, but not of CO2 emissions. Would exempt certain powerplants from the existing requirement that powerplants report their CO2 emissions.
Sponsor: Sen. Bob Smith (R-NH) (by request of the Bush Administration)

S.Amdt.2917 to S.517: The Energy Policy Act of 2002, which includes Title X, establishing a National Climate Change Policy (see S.1008 under National Climate Change Strategy) and expressing the Sense of the Congress on international climate change negotations (see S.1401 under International Climate Change Negotiations), Title XI, establishing a National Greenhouse Gas Registry (see S.Amdt.3239 under Greenhouse Gas Reporting), and Title XIII on Climate Change Science and Technology (including carbon sequestration research).
Sponsor: Sen. Thomas A Daschle (D-SD) (1 cosponsor) – Action: 4/25/2002: Passed by the Senate by a vote of 88 – 11 and redesignated as H.R.4.

H.R.3037: The Renewable Energy and Energy Efficiency Investment Act of 2001, which, among other things, requires electricity generators to disclose their carbon dioxide emissions to potential consumers.
Sponsor: Rep. Frank Pallone (D-NJ) (10 cosponsors)

S.Amdt.3146 to S.Amdt.2917: An amendment to the Energy Policy Act of 2002 revising Title XI, establishing the National Greenhouse Gas Registry. As amended by Sen. Hagel on 4/24/2002, the amendment allows entities to report voluntarily their greenhouse gas (GHG) emissions and emission reductions to a federal database and registry. If, five years after enactment, less than 60% of U.S. anthropogenic GHG emissions have been reported voluntarily, reporting is required of large U.S. GHG emitters. The amendment also encourages future Congresses to consider registered reductions as applicable towards future GHG reduction requirements.
Sponsor: Sen. Chuck Hagel (R-NE)

S.Amdt.3239 to S.Amdt.2917: An amendment to the Energy Policy Act of 2002 revising Title XI, establishing the National Greenhouse Gas Registry. As amended by Sen. Brownback on 4/24/2002, the amendment allows entities to report voluntarily their greenhouse gas (GHG) emissions and emission reductions to a federal database and registry. If, five years after enactment, less than 60% of U.S. anthropogenic GHG emissions have been reported voluntarily, reporting is required of large U.S. GHG emitters. The amendment also encourages future Congresses to consider registered reductions as applicable towards future GHG reduction requirements.
Sponsor: Sen. Sam Brownback (R-KS) (3 cosponsors) – Action: 4/25/2002: Accepted by the Senate by voice vote as an amendment to the Energy Policy Act of 2002, which was then passed by the Senate by a vote of 88 – 11 and redesignated as H.R.4. (See S.Amdt.2917 and H.R.4 under Energy Policy.)

H.R.4611: National Greenhouse Gas Emissions Inventory Act of 2002, which requires reporting and disclosure by entities responsible for large GHG emissions.
Sponsor: Rep. John W. Olver (D-MA) (6 cosponsors)

H.R.5266: The Clear Skies Act, which requires reductions of SO2, NOX, and mercury emissions from electric powerplants, but not of CO2 emissions. Would exempt certain powerplants from the existing requirement that powerplants report their CO2 emissions.
Sponsor: Rep. Joe Barton (R-TX) (by request of the Bush Administration) (1 cosponsor)

back

International Negotiations

H.R.1646: The Foreign Relations Authorization Act, Fiscal Years 2002 and 2003, which includes a Sense of the Congress Resolution urging the U.S. to continue participation in international negotiations with the objective of completing the rules and guidelines for the Kyoto Protocol.
Sponsor: Rep. Henry J. Hyde (R-IL) (1 cosponsor) Action: 5/2/2001: The amendment that included the Kyoto resolution was offered by Rep. Robert Menendez (D-NJ) during markup in the House International Relations Committee and agreed to by a vote of 23 - 20. 5/16/2001: The bill, including the resolution, passed the House by a vote of 352 - 73. 9/30/2002: After conference with the Senate, during which the Menendez Amendment was removed, H.R.1646 became Public Law No: 107-228. (For more on the Menendez Amendment, see S.1401 below.)

H.R.2782: The Corporate Code of Conduct Act, which requires U.S. nationals that employ more than 20 persons in a foreign country to implement a Corporate Code of Conduct, which includes compliance with internationally recognized environmental standards relating to the mitigation of global climate change.
Sponsor: Rep. Cynthia A. McKinney (D-GA) (25 cosponsors)

S.1401: The Foreign Relations Authorization Act, Fiscal Years 2002 and 2003, which includes a Sense of the Congress Resolution urging the U.S. to participate in international negotiations, including putting forth a proposal at the meeting of the Conference of the Parties, with the objective of securing U.S. participation in a revised Kyoto Protocol or other future binding climate change agreements.
Sponsor: Sen. Joseph R. Biden, Jr. (D-DE) Action: 8/1/2001: The amendment that included the resolution was offered by Sen. John F. Kerry (D-MA) during markup in the Senate Foreign Relations Committee and agreed to by a vote of 19 - 0. The Committee then passed the bill. 2/15/2002: The Kerry resolution was included in Title X of the Energy Policy Act of 2002 (see S.Amdt.2917 under Energy Policy). 4/25/2002: The Energy Policy Act, with an amended version of the Kerry resolution, passed the Senate by a vote of 88 – 11 and was redesignated H.R.4.

S.Res.311: A resolution expressing the Sense of the Senate that, among other things, both at the World Summit on Sustainable Development and in other appropriate fora, the United States should re-engage in the negotiation of binding international agreements to address global climate change consistent with (A) U.S. commitments under the U.N. Framework Convention on Climate Change; (B) the findings of the Third Assessment Report of the Intergovernmental Panel on Climate Change; and (C) the Sense of Congress on Climate Change approved by the Senate as part of the National Energy Policy Act of 2002 (see S.1401 above).
Sponsor: Sen. John F. Kerry (D-MA) (12 cosponsors)

back

Climate-Friendly Technology R&D

S.389: The National Energy Security Act, which includes provisions of S.60, establishing carbon emission standards that clean coal facilities must meet in order to be eligible for a tax credit.
Sponsor: Sen. Frank H. Murkowski (R-AK) (20 cosponsors)

S.597: The Comprehensive and Balanced Energy Policy Act, which includes a title establishing a commission to study measures to achieve stabilization of greenhouse gas emissions in the United States at the 1990 level by 2010 and below the 1990 level by 2020.
Sponsor: Sen. Jeff Bingaman (D-NM) (17 cosponsors)

S.1008: The Climate Change Strategy and Technology Innovation Act, which requires development of a U.S. Climate Change Response Strategy with the goal of stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system; establishes a research and development program toward the goal of stabilization of greenhouse gas concentrations; and establishes the National Office of Climate Change Response within the Executive Office of the President.
Sponsor: Sen. Robert C. Byrd (D-WV) (10 cosponsors) – Action: 8/2/2001: Reported favorably with amendments by the Senate Governmental Affairs Committee by voice vote. 2/15/2002: Included in S.Amdt.2917 (the Energy Policy Act of 2002) as Title X. 4/23/2002: Title X of S.Amdt.2917 modified by S.Amdt.3232 by voice vote of the Senate. 4/25/2002: S.Amdt.2917, including the amended Title X, passed by the Senate by a vote of 88 – 11 and redesignated as H.R.4. (See S.Amdt.2917 and H.R.4 under Energy Policy.)

S.1293: The Climate Change Tax Amendments, which create tax incentives for facilities (e.g., coal-fired power plants) that (a) replace existing facilities; (b) reduce, avoid, or sequester greenhouse gas emissions on a per unit of output basis compared to the replaced facilites; and (c) use the same type of fuel as the replaced facilities.
Sponsor: Sen. Larry E. Craig (R-ID) (1 cosponsor)

S.1294: The Climate Change Risk Management Act, which requires development and implementation of a national strategy to manage the risks posed by potential climate change; reforms the voluntary reporting program established by section 1605(b) of the Energy Policy Act of 1992; and promotes technology research and dissemination.
Sponsor: Sen Frank H. Murkowski (R-AK) (5 cosponsors)

S.Amdt.3187 to S.Amdt.2917: Amendment to the Energy Policy Act of 2002, which promotes greenhouse gas reduction through the increased use of recovered material in federally funded projects involving procurement of cement or concrete.
Sponsor: Sen. Robert C. Byrd (D-WV) – Action: 4/24/2002: Agreed to by the Senate by voice vote. 4/25/2001: S.Amdt.2917 passed the Senate by a vote of 88 – 11 and was redesignated as H.R.4. (See S.Amdt.2917 and H.R.4 under Energy Policy.)

S.Amdt.3232 to S.Amdt.2917: An amendment to the Energy Policy Act of 2002, revising Title X, establishing the National Climate Change Policy, based on S.1008 (see above).
Sponsor: Sen. Jeff Bingaman (D-NM) (8 cosponsors) – Action: 4/23/2002: Accepted by the Senate by voice vote. 4/25/2002: S.Amdt.2917, including S.Amdt.3232, passed by the Senate by a vote of 88 – 11 and redesignated as H.R.4. (See S.Amdt.2917 and H.R.4 under Energy Policy.)

H.R.4: The Securing America's Future Energy (SAFE) Act. The version of the bill passed by the House includes provisions of H.R.2587, which promotes advanced clean coal technologies by, among other things, promoting demonstration of technologies that capture, separate, reuse or dispose of carbon dioxide, and establishing carbon emission standards that clean coal facilities must meet in order to be eligible for a tax credit. Also includes provisions of H.R.2460, which requires the Department of Energy to investigate carbon and greenhouse gas mitigation and sequestration technologies. For the version passed by the Senate, see S.Amdt.2917 above.
Sponsor: Rep. W.J. Tauzin (R-LA) (3 cosponsors)

back

Federal Budget and Appropriations

S.Amdt.249 to H.Con.Res.83: An amendment to the Budget Resolution, FY 2002, that adds $4.5 billion to the federal budget for climate change measures.
Sponsor: Sen. John F. Kerry (D-MA) (13 cosponsors) - Action: 4/6/2001: Agreed to by the Senate by voice vote.

S.Amdt.257 to H.Con.Res.83: An amendment to the Budget Resolution, FY 2002, that adds $50 billion to the federal budget to increase general environmental and natural resource funding, including for climate change measures.
Sponsor: Sen. Jon Corzine (D-NJ) (15 cosponsors) - Action: 4/5/2001: Not agreed to by the Senate by a vote of 46 - 54.

S.Amdt.346 to H.Con.Res.83: An amendment to the Budget Resolution, FY 2002, that adds $450 million to the federal budget to increase general environmental and natural resource funding, including for climate change measures.
Sponsor: Sen. Frank H. Murkowski (R-AK) (1 cosponsor) - Action: 4/5/2001: Agreed to by the Senate by voice vote.

(Eight appropriations bills for fiscal year (FY) 2001 contained a restriction on funds for implementation of the Kyoto Protocol. The Bush Administration requested a continuation of the restriction for the same eight appropriations bills in FY 2002. Nevertheless, as shown here, none of the FY 2002 appropriations bills included the restriction.)

H.R.2217: The Interior Appropriations Act, FY 2002, which, as enacted, does not contain any restriction on funds for implementation of the Kyoto Protocol. The version of the bill passed by the Senate included a provision prohibiting the use of funds for implementation of the Kyoto Protocol. The version passed by the House did not. The restriction was removed in conference.
Sponsor: Rep. Joe Skeen (R-NM) Action: 11/5/2001: Became Public Law No: 107-63.

H.R.2299: The Transportation Appropriations Act, FY 2002, which, as enacted, does not contain any restriction on funds for implementation of the Kyoto Protocol. The version of the bill passed by the House included a provision prohibiting the use of funds for implementation of the Kyoto Protocol. (H.Amdt.118 was introduced to remove the restriction, but then withdrawn.) The version passed by the Senate did not include the restriction. The restriction was removed in conference.
Sponsor: Rep. Harold Rogers (R-KY) -- Action: 12/18/2001: Became Public Law No: 107-87.

H.R.2311: The Energy and Water Appropriations Act, FY 2002, which, as enacted, does not contain any restriction on funds for implementation of the Kyoto Protocol. None of the earlier versions of the FY 2002 bill included the restriction.
Sponsor: Rep. Sonny Callahan (R-AL) Action: 11/12/2001: Became Public Law No: 107-66.

H.R.2330: The Agriculture Appropriations Act, FY 2002, which, as enacted, does not contain any restriction on funds for implementation of the Kyoto Protocol. When introduced, both the House bill and its Senate companion (S.1191) prohibited the use of funds for implementation of the Kyoto Protocol. The House prohibition was struck by H.Amdt.165. The Senate prohibition was struck by S.Amdt.1997.
Sponsor: Rep. Henry Bonilla (R-TX) -- Action: 11/28/2001: Became Public Law No: 107-76.

H.R.2500: The Commerce, Justice, State Appropriations Act, FY 2002, which, as enacted, does not contain any restriction on funds for implementation of the Kyoto Protocol. The version of the bill reported by the House Appropriations Committee prohibited the use of funds for implementation of the Kyoto Protocol. The prohibition was struck by H.Amdt.184. None of the Senate versions of the FY 2002 bill included the restriction.
Sponsor: Rep. Frank R. Wolf (R-VA) - Action: 11/28/2001: Became Public Law No: 107-77.

H.R.2506: The Foreign Operations Appropriations Act, FY 2002, which, as enacted, does not contain any restriction on funds for implementation of the Kyoto Protocol. The version of the bill reported by the House Appropriations Committee prohibited the use of funds for implementation of the Kyoto Protocol. The prohibition was struck by H.Res. 199. None of the Senate versions of the FY 2002 bill included the restriction.
Sponsor: Rep. Jim Kolbe (R-AZ) - Action: 1/10/2002: Became Public Law No: 107-115.

H.R.2590: The Treasury-Postal Appropriations Act, FY 2002, which, as enacted, does not contain any restriction on funds for implementation of the Kyoto Protocol. None of the previous versions of the FY 2002 bill contained the restriction.
Sponsor: Rep. Ernest J. Istook, Jr. (R-OK) - Action: 11/12/2001: Became Public Law No: 107-67.

H.R.2620: The Veterans Affairs and Housing and Urban Development Appropriations Act, FY 2002, which, as enacted, does not contain any restriction on funds for implementation of the Kyoto Protocol. None of the previous versions of the FY 2002 bill contained the restriction.
Sponsor: Rep. James T. Walsh (R-NY) - Action: 11/26/2001: Became Public Law No: 107-73.

H.Amdt.118 to H.R.2299: An amendment to the Transportation Appropriations Bill, FY 2002, which provides that the bill’s limitations applicable to the Kyoto Protocol do not apply to activities that are otherwise authorized by law.
Sponsor: Rep. John W. Olver (D-MA) - Action: 6/26/2001: By unanimous consent, the amendment was withdrawn.

H.Amdt.165 to H.R.2330: An amendment to the Agriculture Appropriations Bill, FY 2002, to strike section 726 from the bill. Section 726 prohibits use of funds for implementation of the Kyoto Protocol.
Sponsor: Rep. John W. Olver (D-MA) (1 cosponsor) - Action: 7/11/2001: Agreed to by the House by voice vote.

H.Amdt.184 to H.R.2500: An amendment to the Commerce-Justice-State Appropriations Bill, FY 2002, to strike section 623 from the bill. Section 623 prohibits the use of funds for implementation of the Kyoto Protocol.
Sponsor: Rep. John W. Olver (D-MA) (1 cosponsor) – Action: 7/18/2001: Agreed to by the House by voice vote.

H.Amdt. 226 to H.R. 2506: An amendment to the Foreign Operations Appropriations Bill, FY 2002, to prohibit financial assistance from the U.S. Ex-Im bank for projects that contribute to global warming, which are described as limited recourse projects or long-term programs involving oil and gas field development, a thermal powerplant, or a petrochemical plant or refinery.
Sponsor: Rep. Dennis J. Kucinich (D-OH) – Action: 7/24/2001: By unanimous consent, the amendment was withdrawn.

H.Res.199: A House Rule governing consideration of H.R.2506, the Foreign Operations Appropriations Bill, FY 2002, which includes a provision striking section 566 from H.R.2506. Section 566 prohibits use of funds for implementation of the Kyoto Protocol.
Sponsor: Rep. Lincoln Diaz-Balart (R-FL) – Action: 7/19/2001: Agreed to by the House by voice vote.

S.Amdt.1997 to H.R.2330: A Senate amendment to the Agriculture Appropriations Act, FY 2002, to strike a limitation relating to the Kyoto Protocol.
Sponsor: Sen. Herb Kohl (D-WI) -- Action: 10/25/2001: Agreed to by the Senate by unanimous consent.

S.2779: The Foreign Operations Appropriations Act, FY 2003, which, among other things, appropriates $15,100,000 for International Conservation Programs and the International Panel on Climate Change/United Nations Framework Convention on Climate Change; and appropriates $175,000,000 to support policies and programs in developing countries, countries in transition and other partner countries that directly (1) promote energy conservation and efficiency and clean energy programs; (2) measure, monitor, and reduce greenhouse gas emissions; (3) increase carbon sequestration; and (4) enhance climate change mitigation and adaptation programs. The Act also requires a report to Congress on (1) federal FY 2003 climate change expenditures; and (2) FY 2002, 2003 and 2004 United States Agency for International Development funds associated with climate change.
Sponsor: Sen. Patrick J. Leahy (D-VT) - Action: 7/18/2002: Reported out of the Senate Appropriations Committee.

back

Agriculture and Carbon Sequestration

S.130: The Food Security and Land Stewardship Act, which establishes a flexible fallow program under which, among other things, a producer may get credit for conservation uses of the set-aside acreage, including carbon sequestration.
Sponsor: Sen. Tim Johnson (D-SD)

S.765: The Carbon Sequestration Investment Tax Credit Act, which creates a carbon sequestration investment tax credit.
Sponsor: Sen. Sam Brownback (R-KS) (3 cosponsors)

S.769: The International Carbon Conservation Act, which establishes a carbon sequestration program and an implementing panel within the Department of Commerce to enhance international conservation, promote carbon sequestration, and encourage voluntary efforts on the issue of global climate change.
Sponsor: Sen. Sam Brownback (R-KS) (5 cosponsors)

S.785: The Carbon Conservation Incentive Act, which requires the Department of Agriculture to allow land to be enrolled in a program that promotes carbon sequestration.
Sponsor: Sen. Sam Brownback (R-KS) (2 cosponsors)

S.820: The Forest Resources for the Environment and the Economy Act, which requires the Department of Agriculture to assess opportunities to increase carbon storage on national forests and to facilitate voluntary, accurate reporting of forest projects that reduce atmospheric carbon dioxide concentrations.
Sponsor: Sen. Ron Wyden (D-OR) (1 cosponsor)

S.932: The Conservation Security Act, which promotes, as part of a conservation security program, the reduction of greenhouse gas emissions and the enhancement of carbon sequestration.
Sponsor: Sen. Tom Harkin (D-IA) (19 cosponsors)

S.1255: The Carbon Sequestration and Reporting Act, which establishes a Carbon Advisory Council to advise on reporting guidelines for greenhouse gas sequestration from soil carbon and forest management actions; authorizes the Department of Agriculture to enter into cooperative agreements for forest carbon activities on private, State, and Indian lands; and includes provisions of S.785 to require the Department of Agriculture to allow land to be enrolled in a carbon sequestration program.
Sponsor: Sen. Ron Wyden (D-OR) (1 cosponsor)

S.1571: The Farm and Ranch Equity Act of 2001, which, among other things, establishes a carbon sequestration demonstration program.
Sponsor: Sen. Richard G. Lugar (R-IN) (4 cosponsors)

S.1727: The Conservation Assistance and Regional Equity Act, which among other things, establishes a Conservation Security Program that promotes carbon sequestration on agricultural lands.
Sponsor: Sen. Harry M. Reid (D-NV) (11 cosponsors)

S.1731: The Agriculture, Conservation, and Rural Enhancement Act of 2001, which, in reauthorizing the Farm Bill, provides payments for farmers for practicing carbon sequestration and funds research into carbon sequestration. Also supports renewable energy and energy efficiency in agricultural operations.
Sponsor: Sen. Tom Harkin (D-IA) Action: 11/27/2001: Passed by the Senate Agriculture Committee by voice vote. 2/13/2002: Passed by the Senate by a vote of 58 – 40, and redesignated as H.R.2646. (See H.R.2646 below.)

S.Amdt.2546 to S.1731: An amendment to the Farm Bill to promote forest carbon sequestration and carbon trading by farmer-owned cooperatives.
Sponsor: Sen. Ron Wyden (D-OR) (2 cosponsors) Action: 12/13/2001: Agreed to by the Senate by voice vote.

S.Amdt.3209 to S.Amdt.2917: An amendment to the Energy Policy Act of 2002 establishing carbon storage accounting models to help landowners quantify carbon release and sequestration from various resource uses.
Sponsor: Sen. Paul David Wellstone (D-MN) – Action: 4/25/2002: Agreed to by the Senate by voice vote, and included in S.Amdt.2917 as passed by the Senate by a vote of 88 – 11 and redesignated as H.R.4.

H.R.1949: The Conservation Security Act, which promotes, as part of a conservation security program, the reduction of greenhouse gas emissions and the enhancement of carbon sequestration. (House companion of S.932.)
Sponsor: Rep. John R. Thune (R-SD) (38 cosponsors)

H.R.2542: The American Farmland Stewardship Act, which establishes a Farmland Stewardship Program, under which, among other things, farmers may receive payment for activities that reduce greenhouse emissions and enhance carbon sequestration.
Sponsor: Rep. Adam Putnam (R-FL)

H.R.2646: The Farm Security Act, which reauthorizes the Farm Bill. In the version passed by the House, reauthorizes carbon cycle research and promotes carbon sequestration in forests. In the version passed by the Senate (see S.1731 above), provides payments for farmers for practicing carbon sequestration and funds research into carbon sequestration. The enacted law incorporate the House and Senate carbon sequestration provisions, except that payment for the practice of carbon sequestration is not explicitly provided for. The enacted law also incorporates the Senate bill’s support for renewable energy and energy efficiency on agricultural lands.
Sponsor: Rep. Larry Combest (R-TX) (1 cosponsor) Action: 8/2/2001: Reported by the House Agriculture Committee. 10/5/01: Passed by the House by a vote of 291 - 120. 2/13/2002: Senate version passed by the Senate by a vote of 58 – 40. 5/13/2002: Became Public Law No: 107-171.

S.892: The Clean and Renewable Fuels Act, which phases out the use of methyl tertiary butyl ether (MTBE) in fuel to promote the use of renewable fuels, and requires a report on the resulting greenhouse gas emission reductions.
Sponsor: Sen. Tom Harkin (D-IA) (1 cosponsor)

S.1071: The Biofuels Air Quality Act, which promotes use of renewable fuels by, among other things, requiring consideration of the extent to which a proposed project under the congestion mitigation and air quality improvement program reduces atmospheric carbon emissions.
Sponsor: Sen. Christopher S. Bond (R-MO) (1 cosponsor)

H.R. 2088: The Biofuels Air Quality Act, which promotes use of renewable fuels by, among other things, requiring consideration of the extent to which a proposed project under the congestion mitigation and air quality improvement program reduces atmospheric carbon emissions. (House companion of S. 1071.)
Sponsor: Rep. John M. Shimkus (R-IL) (39 cosponsors)

back

Syndicate content