Electric Vehicles

The Dawn of a New Day for Autos

A lot has changed in the two years since I made my first visit to the Washington Auto Show. Back then, gas prices averaged $2.68 per gallon and the Nissan LEAF looked like a “car of the future” compared to the other vehicles on the showroom floor. Now, prices at the pump are 25 percent higher, averaging $3.50 per gallon in 2011, and fuel costs are eating up the largest share of the average American’s income in over 30 years. Meanwhile, the auto industry is adapting their product line to their new environment and cooperating more closely with regulators. The 2012 auto show includes many more alternative vehicles like the all-electric Ford Focus (see picture below) and the Prius V, a 42 mile per gallon hybrid station wagon.

The Nuts and Bolts of the New CAFE and GHG Vehicle Standards

This is Part 2 of a series on the new EPA-DOT vehicle greenhouse gas (GHG) and fuel economy standards. Part 1 took a first look on the goals of the standards.

These days, most cars can go from 0 to 60 mph in a pretty short time – but can the nation’s car fleet go from 27.3 to 49.5 mpg in 15 years flat?

As we mentioned in Part I, a 49.5 mpg CAFE standard (or 54.5 mpg by the EPA’s calculation) is the new vehicle standard for 2025. Considering that the current CAFE level is 27.3 mpg, closing the 20 mpg gap will need some pretty quick acceleration, efficiency-wise.

Though the new standard may seem daunting, the key takeaway is that passenger vehicles will use many technologies we already know about and still deliver the freedom of mobility and convenience found in today’s cars. In fact, most of the fleet will still be powered by diesel and gasoline but with under-the-hood technological improvements that improve the bang for each buck of gas.

Landmark New Vehicle Standards Set a Strong Path to the Future

This post is the first of a two-part series on the new joint EPA-NHTSA vehicle standards. It will give an overview of the new standards. The second part dives deeper into details on how the new standards will be met.

As the Pew Center for Global Climate Change has transformed into the Center for Climate and Energy Solutions (C2ES), the transportation sector is undergoing some major transformations itself.

The eagerly anticipated model years 2017-2025 vehicle standards for greenhouse gases and fuel economy have been officially proposed and inked into the best of formal Federal prose – an extensively detailed 893-page behemoth of a report to be exact. The new vehicle standards would nearly double the efficiency of the nation’s passenger vehicle fleet. And based on its contents, these proposed standards appear to be a tremendous victory for most, creating benefits for the economy, national security, public health, vehicle buyers, and the global climate.

It’s been a long time coming. Together with last year’s rulemakings on 2012-2016 light duty standards and 2014-2018 heavy duty standards, vehicle standards haven’t seen an overhaul of this magnitude since, well, the creation of such standards in the 1970s.

NPR Not Plugged In to All the Facts on Electric Vehicles

A recent story on NPR’s Morning Edition about plug-in electric vehicles (PEVs) misses the mark. At C2ES, we don’t believe PEVs are the single answer to our transportation energy security and environmental problems, but we think they could make a contribution if they’re given a fair shot. That’s why we started an initiative on PEVs almost a year ago to take a practical look at the challenges and opportunities of PEV technology.

First, the story mentions plug-in hybrid electric vehicles (PHEVs) like the Chevrolet Volt at the outset, but then ignores how that vehicle type overcomes the problem at the heart of the story – range anxiety. The fear of being stranded due to inadequate driving range and deficient charging infrastructure is a legitimate critique of battery electric vehicles (BEVs). BEvs are battery-only vehicles, i.e. they cannot run on gasoline. But, the Volt and soon-to-be-released Toyota Prius Plug-in Hybrid can run on gasoline or electricity and have the same range as a conventional car. You can travel 25 to 50 miles in a Volt or up to 15 miles in a plug-in Prius without using gasoline and then rely on gasoline to fuel the rest of your trip. It’s difficult to estimate how many trips these electric-only ranges will accommodate, but a plug-in hybrid overcomes the need for a consumer to make that determination. In case you’re wondering, the average car trip length is 9.34 miles according to the National Household Transportation Survey.

PEV State of Play and Literature Review

Plug-in Electric Vehicles Market: State of Play

July 2011

Authored by Nick Nigro

Nearly all major auto companies—as well as several new start-ups—plan to produce plug-in electric vehicles (PEVs) within the next 2 or 3 years. According to transportation experts, the impact of the growing PEV market on the automobile market, electrical grid, and the transportation system could be significant, and will vary both regionally and over time. The introduction of PEVs into the automobile market presents a transformative opportunity for the transportation sector. Wherever these vehicles exist in sufficient numbers, significant technological, economic, and environmental change will occur. This opportunity affects automakers, electricity providers, vehicle charging companies, battery manufacturers, all levels of government and, most importantly, consumers. Deploying PEVs will bring together many of these stakeholders for the first time. This paper outlines the state of play in the PEV market including ongoing deployment projects, expected consumer market demand, and public policies related to PEV deployment.

Download the full white paper (pdf)
 

 

Plug-in Electric Vehicles: Literature Review

July 2011

Authored by Monica Ralston and Nick Nigro

This paper reviews the current literature on plug-in electric vehicles (PEVs) with a focus on issues and solutions related to vehicle deployment and integration with the U.S. electrical grid. It is a companion to the Center's “Plug-in Electric Vehicles Market: State of Play.” The subjects covered include vehicles, electricity, the passenger vehicle market, and public policy. This paper relies on the most recent research from government, private business, academia, and research institutions; peer-reviewed literature was used wherever possible. The paper’s purpose is to provide a foundation for overcoming some of the major hurdles to PEV deployment in the United States both currently and in the future.

Download the full white paper (pdf)
 

 

Nick Nigro
0

Getting It Right on Fuel Efficiency

This post also appears in the National Journal Energy & Environment Experts blog in response to the question: What should drive fuel efficiency?

At a moment when it appears to many that our government can’t do anything right, the current approach to regulating vehicle fuel economy and greenhouse gas (GHG) emissions is a bright spot.

After decades of failing to tighten corporate average fuel economy (CAFE) standards, and several years when California and other states began to take the matter of setting vehicle GHG standards into their own hands, the federal government finally got its act together. In 2007 Congress enacted the Energy Independence and Security Act of 2007, tightening CAFE. In 2010, NHTSA and the U.S. Environmental Protection Agency (EPA) jointly set GHG and CAFE standards, and California agreed to conform its rules to the federal ones. NHTSA and EPA are hard at work at a second round of standards for light duty vehicles, as well as the first-ever set of similar rules for medium and heavy duty trucks.

We now have the Congress, federal and state regulators, industry and public interest groups aligned on a policy framework that is meeting important national goals of reducing oil dependence and GHG emissions, providing regulatory consistency and certainty to the industry, and creating a climate favorable to investment and innovation.

The auto industry is responding successfully. The plug-in hybrid electric Chevy Volt won the 2011 Motor Trend Car of the Year, 2011 Green Car of the Year, and 2011 North American Car of the Year. It’s also selling well. But PHEVs are just part of the story. The Chevy Cruze and Hyundai Elantra are among the nine vehicles in the U.S. marketplace that get more than 40 miles per gallon. They were also among the 10 top-selling vehicles last month. Higher sales of fuel-efficient vehicles across the board contributed to strong sales and combined profits of nearly $5.9 billion for the three U.S. automakers in the first quarter of this year.

Higher gasoline prices are heightening consumer interest in these vehicles. But we cannot rely on oil prices alone to drive us to the next generation of vehicles. Oil prices are too volatile to motivate the sustained business investment we need. And the price we pay at the pump doesn’t reflect the true cost of oil to our country. Half of the 2010 U.S. trade deficit was from oil – that’s $256.9 billion we sent overseas last year alone. The U.S. EPA estimates that the energy security benefit of reducing oil dependence is on the order of $12 per barrel. And gasoline burning inflicts enormous damage on our air quality and climate. For example, the transportation sector is responsible for more than a quarter of U.S. GHG emissions and is a major contributor to smog.

The beauty of the fuel economy and GHG standards is that they are performance based. They set targets based on important public policy goals – i.e., oil savings and GHG reductions – but leave it to industry to find the best way to meet them. They don’t “pick winners.” They should remain the core of our public policy framework for transportation.

But our current set of vehicles and fuels may not be up to the job of meeting our long-term goals. In order to level the playing field with the incumbent technologies that have benefited from nearly a century of infrastructure development and fuel-vehicle optimization, we need to make some public investment to jumpstart alternative vehicles and fuels. This has to be done carefully. We need a savvy, adaptive strategy that ensures that any subsidies are only temporary, leverages public investment with private dollars, spawns experiments and learns from them, and rewards environmental and efficiency performance.

It is not clear whether hydrogen, natural gas, electricity, or biofuels are the long-term solution to our energy and environmental challenges. But we need to continue to keep the pressure on all of them through performance-based standards, research them all, subsidize limited deployment to see how they perform in the real world, and leave it to industry and consumers to determine their ultimate success in the marketplace.

Judi Greenwald is Vice President for Innovative Solutions

Let's Ride the EV Wave

This post also appeared in the National Journal Energy & Environment Experts blog in response to a question about oil use and the future of electric vehicles.

Whether or not electric vehicles (EVs) take off will ultimately depend on consumer acceptance of new technology. But public policy and technological progress are just as important, as we highlight in our new report on the transportation sector.

Indeed, electric drive vehicles powered by batteries or hydrogen fuel cells could revolutionize transportation in the United States, saving considerable amounts of oil while also reducing the sector’s impact on our global climate. And the EVs on the market now are off to a great start, winning national and international awards.

Nearly all major automakers are planning to introduce these vehicles in the coming years, and I applaud automakers like Ford that have committed to building alternative drivetrains in significant number for the long haul. Companies like Ford understand climate change and the need to reduce our impact on our global environment while not sacrificing our mobility. For EVs to achieve that goal, we need policies like a clean energy standard that aim to decarbonize our electrical grid. I’m sure Ford is also investing in this space because they see a market opportunity.

The private sector has invested billions of dollars in developing, manufacturing, promoting, and distributing EVs in the last decade. From a map on our website, you can see that policymakers across the country are supporting EVs because they want their region to benefit from this burgeoning market.

Policymakers should rely on private capital as much as possible to build out the EV charging infrastructure so we can balance the desire to support alternative vehicles while also tackling our nation’s budget deficit. To that end, we should coordinate policy related to EV purchase and home charging nationwide so private players can enter new markets more easily. The most efficient way to “refuel” these vehicles is not yet clear, and we should use policy to help provide the foundation to let the market work.

Another element that is critical to the success of these vehicles is its most expensive component – the battery. Not only do we need aggressive R&D to develop batteries with much higher energy density, we also need to figure out what to do with these batteries at the vehicle’s end-of-life. About 80 percent of the battery’s capacity is still usable at this point, resulting in the largest untapped resource in this space today.

If we achieve the right mix of policy, technological progress, and consumer acceptance, there’s little reason to doubt that alternative vehicles will have a significant impact on the car market in this decade. It appears that it will be tough to kill the electric car this time.

Eileen Claussen is President

Moving Our Cars Off Oil

This post first appeared in Txchnologist.

It is too early to pick the ultimate car of the future. Plug-in electric, hydrogen fuel cell, and biofuel vehicles are currently in contention, but it is quite possible that no single alternative will dominate the future the way that gasoline-powered cars own our roads today. The competition will be fierce because these new technologies will not only be competing against each other, but also against the ever-improving internal combustion engine. By 2035, it’s quite possible a new gasoline-powered car will get 50 mpg and a hybrid-electric car (like the Toyota Prius) will achieve 75 mpg.

Whatever technologies win out, it is clear the societal costs of oil are too high. The price at the pump fails to include all the national security and environmental costs of exploration, extraction, distribution, and consumption of oil. Since oil appears cheaper to the consumer than its true cost to society, we end up consuming more than we should. We send hundreds of billions of dollars out of our economy each year – $330 billion in 2010 alone – to oil producers with monopoly power instead of investing the money here at home.

What's The Car Of 2035?

This blog post also appeared on Edmunds Auto Observer


In movies like the iconic Demolition Man, we’re led to believe the future will be filled with cars well advanced from those on the road today (in the case of the Sylvester Stallone action flick, our cars will instantly fill with foam upon a collision). But what do the real experts think about the cars we’ll be driving in the future? For example, will our cars drive themselves like Google’s modified Toyota Prius?


We answer some of these questions in our recently released report that focuses on reducing the U.S. transportation sector's greenhouse gas emissions and oil use. The report details options available to automakers for building the cars of the future. It doesn’t attempt to predict the makeup of the car market in the future – that’s up to the consumer. Instead, the report highlights that many combinations of vehicles could significantly reduce oil use and greenhouse gas emissions in the future.

Jump-starting the plug-in electric vehicle market

There is a lot of buzz around Washington these days that plug-in electric vehicles (PEVs) are the answer to our energy security and climate problems. In the recent State of the Union, President Obama restated his goal of having 1 million PEVs on the road in the United States by 2015, and the U.S. Department of Energy (DOE) recently released a report projecting that we will meet the goal. Meanwhile, a panel I sat on for Indiana University’s School of Public and Environmental Affairs (SPEA) said the data indicates we won’t get quite that many PEVs on the road by 2015. The question is – does it matter if we precisely reach the President’s goal or not? The answer is no, so long as we are taking concrete steps towards jumpstarting PEV manufacturing and supporting infrastructure and learning from the experiences of early PEV adopters.

Syndicate content