Basic

fdsafdsafs

Climate Solutions: The Role of Nuclear Power

Promoted in Energy Efficiency section: 
0
9:30 a.m.-12:00 p.m, National Press ClubNuclear power supplies more than 60 percent of zero-carbon electricity in the United States. The unexpected retirement of five nuclear reactors is prompting concerns that additional closures could make it tougher to meet U.S. climate goals. C2ES releases a new brief examining this emerging dilemma and hosts a discussion with government, industry, and policy leaders.EILEEN CLAUSSEN, President, Center for Climate and Energy SolutionsCAROL BROWNER, Distinguished Senior Fellow, Center for American ProgressPETER LYONS, U.S. Assistant Secretary of Energy for Nuclear EnergyDR. SUSAN TIERNEY, Managing Principal, Analysis GroupClick here to RSVP

Nuclear power supplies more than 60 percent of zero-carbon electricity in the United States. The unexpected retirement of five nuclear reactors is prompting concerns that additional closures could make it tougher to meet U.S. climate goals.

C2ES releases a new brief examining this emerging dilemma and hosts a discussion with government, industry, and policy leaders.

Monday, April 28
9:30 a.m.-12:00 p.m
National Press Club
529 14th St. NW, 13th Floor
Washington, DC 20045

Speakers at the event will include:

EILEEN CLAUSSEN
President, Center for Climate and Energy Solutions

CAROL BROWNER
Distinguished Senior Fellow, Center for American Progress

PETER LYONS
U.S. Assistant Secretary of Energy for Nuclear Energy

DR. SUSAN TIERNEY
Managing Principal, Analysis Group

Click here to RSVP

 

C2ES Welcomes New Vice President for Policy and Analysis

Media Advisory

Nov. 25, 2013

Contact Laura Rehrmann at rehrmannl@c2es.org, 703-516-0621

C2ES Welcomes Jeff Hopkins as New Vice President for Policy and Analysis

WASHINGTON – The Center for Climate and Energy Solutions is pleased to welcome Jeff Hopkins as its new Vice President for Policy and Analysis. Hopkins will lead C2ES programs in the energy, power, and transportation sectors.

Hopkins has more than 15 years of private and public sector experience in economic and environmental policy analysis. Prior to joining C2ES, he led mining company Rio Tinto’s climate policy engagement in the United States and Canada. Previously, he was acting chief economist for the House Budget Committee and worked for the U.S. Department of Agriculture’s Economic Research Service.

“Jeff brings strong experience examining the global energy sector and trends in best regulatory practice. He understands policy from both the corporate and government perspectives. Jeff is a great addition to the team,’’ said C2ES President Eileen Claussen.

Hopkins has a doctorate from Ohio State University in agriculture, environment and development economics and was a Peace Corps Volunteer in Guatemala from 1987-1989.

--

About C2ES: The Center for Climate and Energy Solutions (C2ES) is an independent, nonprofit, nonpartisan organization promoting strong policy and action to address the twin challenges of energy and climate change. Launched in November 2011, C2ES is the successor to the Pew Center on Global Climate Change. Learn more at www.c2es.org.

9 tips for a greener holiday

As we plunge into the holiday shopping season, take a minute to think about the things you can do to make searching for the perfect gift a little friendlier on the planet (and your wallet).

Here are nine ideas for making the holiday season a little greener and less stressful. Try one. And get more information on how you can save energy and help the planet at http://makeanimpact.c2es.org/

All Energy Sources Entail Risk, Efficiency a No-Brainer

At the moment, our attention is riveted by the events unfolding at a nuclear power plant in Japan. Over the past year or so, major accidents have befallen just about all of our major sources of energy: from the Gulf oil spill, to the natural gas explosion in California, to the accidents in coal mines in Chile and West Virginia, and now to the partial meltdown of the Fukushima Dai-ichi nuclear reactor. We have been reminded that harnessing energy to meet human needs is essential, but that it entails risks. The risks of different energy sources differ in size and kind, but none of them are risk-free.

Solutions in Steps, Not Leaps: The Year in Review and a Look Ahead

By Eileen Claussen
December 20, 2010

2010 was a year of highs and lows.

On the high side were global temperatures; 2010 will mark the hottest year in recorded history. At the start of the year, there was also the short-lived high of thinking we might be on the precipice of meaningful action in the U.S. Congress to protect the climate. Finally, at year’s end the climate talks in Cancún delivered (surprise!) tangible results in the form of agreement on key elements of a global climate framework.

But alas, the lows won out for most of 2010 as a trumped-up email controversy, continuing economic unease, and growing anti-government sentiment in the United States undermined the effort to forge lasting climate solutions at all levels. 

Congress. Until quite recently, the Pew Center and many others were actively supporting cap and trade as the number-one climate policy solution. After the House passed a fairly comprehensive energy and climate bill in June 2009 that had a cap-and-trade system at its core, we actually thought that it might become the law of the land.

Before long, however, it became eminently clear that the Senate would not be able to pass a similar bill. The 2010 U.S. elections, which brought more doubters of climate change into the halls of Congress, only made it clearer that comprehensive climate action is off the table for now.

EPA. With Congress unable to pass comprehensive climate legislation in 2010, attention turned to what EPA might be able to do under existing authorities. And it turns out that EPA can do quite a lot by taking reasonable steps that have garnered critical support from the business and environmental communities. In late October, for example, the agency announced a sensible proposal to reduce greenhouse gas emissions and improve fuel efficiency for medium and heavy-duty vehicles. This was followed by a November announcement that will go a long way to making sure that new industrial facilities use state-of-the-art technologies to boost efficiency and reduce emissions.

Of course, opponents of these and other EPA regulations will surely raise a ruckus, and there will be loud cries in Congress to delay the regulations and even cut funding for the EPA. But the possibility remains that the agency could conceivably begin to chip away at U.S. emissions in the months and years ahead.

State Actions. Looking beyond Washington, state capitals were the focus of creative thinking and leadership on the issue of clean energy in 2010. Massachusetts, for example, set a statewide energy efficiency standard in 2010 supported by $1.6 billion in incentives. Meanwhile, California voters upheld the state’s greenhouse gas reduction law by defeating Proposition 23. This marked the first direct vote on addressing climate change in the United States, and it won in an overwhelming fashion.

But the overall story regarding climate action in the states was more mixed. While several regional climate initiatives continued to push forward, the November elections brought to the nation’s statehouses a group of new leaders who adopted strong stands against climate action in their campaigns. We will stay tuned to see how their campaign rhetoric translates into governing.

International. The agreement reached by international negotiators in Cancún in December closed out 2010 on a positive note. The Cancún Agreements import the essential elements of the 2009 Copenhagen Accord into the U.N. Framework Convention on Climate Change, including a stronger system of support for developing countries and a stronger transparency regime to better assess whether countries are keeping their promises. The Cancún Agreements also mark the first time that all of the world’s major economies have made explicit mitigation pledges under the Convention.

Of course, the ultimate goal of the continuing international talks should be a legally-binding climate treaty, but in Cancún we saw countries agreeing on incremental steps that will deliver stronger action in the near term and lay the foundation for binding commitments down the road.

Looking Ahead. Looking ahead, I believe 2011 holds promise only if those of us who support climate action can learn from what happened in 2010. In recent years, domestic and international efforts largely centered on a “big bang” theory of trying to achieve everything at once. Instead, it’s instructive now to take a cue from Cancún and accept that a step-by-step approach to building support for climate solutions offers our best shot at progress. 

Calling on the new Congress to pass cap and trade or similarly comprehensive solutions will be a nonstarter, for example.  But there may be an opportunity on Capitol Hill for less sweeping steps to reduce U.S. emissions.  

Supporters would do well to spend the next several months laying the groundwork for incremental solutions by strengthening communications with the public. We need to do a better job of helping people understand both the risks and the opportunities presented by climate change. In the same way we buy fire insurance to protect against an event that has a statistically small chance of happening but would result in severe damage, acting now to cut emissions reduces our vulnerability to severe events that are likely to become more common in a warming world. And the success of the “No on Prop 23” campaign in California suggests that there remains a healthy appetite among the general public and in the business community (which provided substantial support for the effort) to back well-framed climate solutions. 

After a year of highs and lows, we still must aim high in our efforts to address one of the greatest challenges of our time. But we should also heed the lessons of the past year and work for more modest victories now that can keep us on the path to longer-term solutions. 

by Eileen Claussen, President, Pew Center on Global Climate Change-- December 2010
Eileen Claussen
0

Meaningful and Cost Effective Climate Policy: The Case for Cap and Trade

July 2010

By: Janet Peace and Robert N. Stavins

 

Download this paper

Press release

 

Introduction:

There is broad consensus among those engaged in climate policy analysis—from academia, government, NGOs, and industry—that any domestic climate policy should include, at its core, market-based policy instruments targeting greenhouse gas (GHGs) emissions, because no other approach can do the job and do it at acceptable cost. By “putting a price on carbon,” market-based polices harness the power of our free enterprise system to reduce pollution at the lowest costs. Recent concern, however, about the role of financial markets—and specific fraudulent investment vehicles—in the recent recession have raised questions among the public about the efficacy and functioning of markets. Not surprisingly, some have questioned the wisdom of employing market mechanisms to tackle climate change. Critics ask, how can market-based policy instruments be trusted to look after the public’s welfare with regard to global-warming pollution (or anything else, for that matter)?

When it comes to climate change and environmental issues more generally, environmental economists recognize that the source of many problems is not markets per se, but the absence of markets for environmental goods and services, such as clean air and water. In the absence of prices (costs) associated with environmental damages, producers and consumers need not account for such damages in their activities and choices. Environmental damage is thus an unintentional byproduct of decisions to produce or consume. Because these negative consequences are external to the firm or individual creating them, economists refer to them as externalities. They are one category of market failures; in this case, the failure of existing markets to price accurately the full costs to society of producing and consuming goods that create a pollution externality.

In the case of climate change, the burning of fossil fuels and other activities that release GHGs into the atmosphere are associated with increasing global temperatures. The costs of these impacts, including an increase in extreme weather events, rising sea levels, loss of biodiversity, and other effects, are borne by society as a whole, including future generations. In the absence of a price on carbon, these environmental costs are not included in the prices of GHG-based goods—thus there is no direct cost for emitting GHG pollution into the atmosphere. From a societal perspective, this leads to an inefficient use of resources, excessive emissions, and a buildup of excess concentrations of GHGs in the atmosphere.

The current status quo or “laissez-faire” approach to dealing (or rather failing to deal) with GHG pollution results in an outcome that is not in the interest of society. For this reason, many people have advocated putting a price on GHG emissions to cause market participants to confront or “internalize” the costs of their actions and choices. A policy instrument that puts a price on GHG emissions would, for example, raise the cost of coal-generated electricity, relative to electricity generated with natural gas, because coal as a fuel emits more carbon dioxide (CO2) per unit of energy. Producers and consumers would take this relative cost differential into account when deciding how much electricity to produce and what fuels to use in producing it. That is the point — to make the cost of emitting carbon explicit, so that it becomes part of the everyday decisionmaking process.

Two alternative market-based mechanisms can be used to put a price on emissions of GHGs—cap and trade and carbon taxes. With cap and trade, an upper limit or “cap” on emissions is established. Emission allowances that equal the cap are distributed (either freely or through auction) to regulated sources which are allowed to trade them; supply and demand for these allowances determine their price. Sources which face higher abatement costs have an incentive to reduce their abatement burden by purchasing additional allowances, and sources which face lower abatement costs have an incentive to reduce more and sell their excess allowances. Thus, the government establishes the environmental goal (the cap), but the market sets the price.

In contrast, a carbon tax sets a price on emissions, but leaves the environmental outcome uncertain. The tax creates an incentive for firms to reduce their emissions up to the point where the cost of reductions is equivalent to the tax. If the tax is low, fewer reductions will result; if the tax is high, more abatement effort will be forthcoming. Given the real-world U.S. political context, the more promising of the two market-based approaches to addressing climate change is clearly cap and trade, which creates a market for GHG reductions.

While the common sense justification for putting a price on carbon emissions seems straightforward, some of the public and even some policy makers are questioning whether creating a market for GHG reductions is a cure worse than the disease itself. Some questions and concerns include the following:

  • Why employ market-based approaches to GHG emission reductions, when markets are subject to manipulation?
  • Would a market-based approach to reducing GHG emissions be a corporate handout?
  • Can markets be trusted to reduce emissions?
  • Will a market-based approach, such as cap and trade, be too costly?
  • Are other approaches—including conventional regulation and taxes—likely to be more effective and less complicated?

Our goal in this paper is to address the questions above, and—we hope—leave the reader with a better understanding of the issues, the rhetoric, and the fundamental reasons why cap and trade is the most promising approach to address the threat of climate change. We believe that past concerns about how markets operate can be effectively addressed and result in a policy that is both environmentally and economically superior to alternative approaches.

Janet Peace
Robert N. Stavins
0

Hurricanes and Oil Will Mix: Managing Risk Now

Promoted in Energy Efficiency section: 
0
Capitol Hill briefings on the 2010 hurricane season, which forecasters predict will produce between 14 and 23 named hurricanes - the most active season since 2005, when Hurricane Katrina and 27 other named storms swept the Atlantic and Gulf of Mexico. Key discussion topics include risks an active hurricane season pose for energy-related infrastructure, for inland areas as storm surges push oil from the Gulf spill beyond beaches and marshland, and for stakeholders dealing with flooding in coastal communities in the Gulf and along the East Coast. 

This briefing will be held at two separate times and locations to accommodate House and Senate staff.

Wednesday, June 30

12:00 Noon to 1:30 PM
Rayburn House Office Building, Room 2325

3:30 to 4:45 PM
Capitol Visitors Center, Room SVC 202

Seasonal forecasters predict that 2010 will produce between 14 and 23 named hurricanes -- the most active season since 2005, when Hurricane Katrina and 27 other named storms swept the Atlantic and Gulf of Mexico.  As economic challenges continue and oil spews from the damaged Deepwater Horizon well in the Gulf, the growing impacts to the region's economic recovery and unique ecosystems are staggering.  What risks does an active hurricane season pose for other energy-related infrastructure, for inland areas as storm surges push oil beyond beaches and marshland, and for stakeholders dealing with flooding in coastal communities in the Gulf and along the East Coast?  Can recent advances in hurricane prediction help manage these risks? Might related climate change impacts exacerbate them in the future? What does an increasing scale of catastrophic loss associated with hurricane activity mean for critical services provided by the insurance sector? Please join our panelists as they address these questions and discuss research results, institutions, and processes in place to help manage potential catastrophic risk of this hurricane season. 


AGENDA
   
Opening remarks by Senator Mary Landrieu, Honorary Host (3:30pm briefing only)

Moderator:

  • Heidi Cullen
    CEO and Director of Communications, Climate Central


Panelists:

  • Greg Holland
    Director, NCAR Earth System Laboratory, National Center for Atmospheric Research
  • Rick Luettich
    Professor & Director, Institute of Marine Sciences, University of North Carolina at Chapel Hill
  • Rowan Douglas
    CEO, Global Dynamics, Willis Re and Chairman, Willis Re Research Network

 

RSVP to Gloria Kelly at gloriak@ucar.edu or (303) 497-2102 by Monday, June 28

Sponsored by the American Geophysical Union (AGU), the Congressional Hazards Caucus Alliance, the National Science Foundation (NSF), the Pew Center on Global Climate Change, the University Corporation for Atmospheric Research (UCAR), and the Weather Coalition.

With appreciation to the House Committee on Science and Technology and the Senate Subcommittee on Disaster Recovery of the Committee on Homeland Security and Governmental Affairs.

Electric Utility Industry Can Lead the Way on Energy and Climate Legislation

June 23, 2010

By Eileen Claussen and Jim Rogers

This op-ed first appeared in Politico.

 

Passing a meaningful energy and climate bill this year will be challenging — but not impossible.

It’s time for all of us — politicians, business leaders and environmentalists — to put wishful thinking aside, establish realistic goals and develop a consensus for legislation that can be passed this year.

If that means capping emissions from the utility sector first — so be it. There is growing consensus in the electric utility industry to act now, so let’s move forward.

Duke Energy and other electric utilities are already scheduled to retire and replace virtually all coal and other large power plants with cleaner and more efficient technologies by 2050.

A clear and predictable federal energy and climate policy can accelerate these projects and put private capital to work more rapidly. It can also create millions of jobs.

This would not only reduce greenhouse gas emissions but would also reduce sulfur dioxide, nitrogen oxide and mercury emissions, which contribute to acid rain, smog and other health issues. That would improve air quality across the board.

At Duke Energy, approximately 6,000 people are now working on designing and building more advanced power plants. That’s quite an economic stimulus.

When their work is done, permanent jobs would be created, municipal and county tax collections would increase and old and inefficient power plants would be shut down.

With the right signal from Washington, the company can by 2020 close roughly 4,000 megawatts of coal plants more than 45 years old.

This action will drive greater use of cleaner, domestic energy sources that will enhance our nation’s security and limit pollution.

Sensible policy should include incentives for new emissions-free nuclear power, renewable energy and carbon capture and storage for coal plants. It must also clarify federal emissions regulations so electric utilities can shift to cleaner and more efficient power plants without the uncertainty of patchwork regulatory approaches and the threat of litigation.

Electric utilities have some of the strongest balance sheets in industry. They can now borrow private capital at historically low rates. For example, over the past 2½ years, Duke Energy has borrowed $8 billion at an average rate of less than 5.5 percent.

This means lower long-term costs to electric consumers — with no increase in the national debt and deficit.

But this will all take time. We need to be willing to adopt the three C’s: commitment, collaboration and compromise.

Commitment: We have to be in this together — for the long haul. Good energy and climate policies will allow the electric utility industry to make sound investment decisions.

Electric utilities may be willing to go first. But they are not going to be willing to go alone.

Collaboration: All successful environmental legislation has been predicated on a collaborative and bipartisan approach. The 1990 Clean Air Act amendments, designed to reduce acid rain, urban air pollution and toxic air emissions, passed the House by a 401-21 vote and the Senate by a 89-11 vote.

That process of working together to find common ground among diverse stakeholders is what we need now.

Compromise: Collaboration succeeds only when there’s a real spirit of compromise. That’s why it is the cornerstone of our democracy. There must be give-and-take at every decision point.

Current clean energy and climate legislation is not an all-or-nothing proposition. It’s a work in progress that can begin our transition to a clean energy future. We need to look past our differences and act where there is agreement.

It’s time to get started.

Eileen Claussen is president of the Pew Center on Global Climate Change. Jim Rogers is chairman, president and CEO of Duke Energy.

by Pew Center President Eileen Claussen and Duke Energy CEO Jim Rogers-- Appeared in Politico, June 23, 2010

The Case for Action: Creating a Clean Energy Future

Download the report (pdf)

 

The Case for Action: Creating a Clean Energy Future
May 2010

The United States needs strong action now to reduce the risks of climate change, strengthen our energy independence, protect our national security, and create new jobs and economic opportunities. The Pew Center on Global Climate Change believes that the case for action has never been stronger. With a strong energy and climate policy the United States can lead the 21st century clean energy economy.

0

What is Black Carbon?

What Is Black Carbon?
April 2010

PDF version

Black Carbon (BC) has recently emerged as a major contributor to global climate change, possibly second only to CO2 as the main driver of change.[1] BC particles[2] strongly absorb sunlight and give soot its black color. BC is produced both naturally and by human activities as a result of the incomplete combustion of fossil fuels, biofuels, and biomass. Primary sources include emissions from diesel engines, cook stoves, wood burning and forest fires. Reducing CO2 emissions is essential to avert the worst impacts of future climate change, but CO2 has such a long atmospheric lifetime that it will take several decades for CO2 concentrations to begin to stabilize after emissions reductions begin. In contrast, BC remains in the atmosphere for only a few weeks, so cutting its emissions would immediately reduce the rate of warming, particularly in the rapidly changing Arctic. Moreover, reduced exposure to BC provides public health co-benefits, especially in developing countries. Technologies that can reduce global BC emissions are available today.

Black Carbon and Climate Change

BC warms the climate in two ways. When suspended in air, BC absorbs sunlight and generates heat in the atmosphere, which warms the air and can affect regional cloud formation and precipitation patterns. When deposited on snow and ice, it absorbs sunlight, again generating heat, which warms both the air above and the snow and ice below, thus accelerating melting. Because BC remains in the atmosphere for only one to four weeks, its climate effects are strongly regional. Its short lifetime also means that its climate effects would dissipate quickly if black carbon emissions were reduced, thus benefiting most directly the countries or communities that invest in policies to reduce BC emissions.

A recent study suggests that BC may be responsible for more than 30 percent of recent warming in the Arctic,[3] contributing to the acceleration of Arctic sea ice melting. Loss of Arctic sea ice would lead to more rapid warming and possibly irreversible climate change. BC is also driving increased melting of Himalayan glaciers, which are a major source of freshwater for millions of people in the region. BC may also be driving some of the observed reduction of the snowpack in the Pacific Northwest of the United States.

Different types of soot contain different amounts of BC—generally the blacker the soot, the more of a warming agent it is. Fossil fuel and biofuel soot are blacker than soot from biomass burning[4] (e.g., forest fires and wood fuel), which is generally more of a brownish color. Thus, controlling emissions of soot from fuel sources is an effective way of reducing atmospheric temperatures in the short term. Based on current information, the United States is responsible for about 6 percent of global BC emissions; while it has a history of making reductions to improve air quality, further improvements can be made. The majority of BC emissions come from the developing world: China and India together account for some 25–35 percent of emissions.

Control technologies that reduce BC include retrofitting diesel vehicles with filters to capture BC, fuel switching (e.g., from diesel to natural gas in buses), and replacement of inefficient cook stoves with cleaner alternatives. Adopting these alternatives would have positive co-benefits for public health, especially in the developing world. For example, retrofitting or replacing diesel buses and trucks would greatly improve urban air quality in densely populated cities. Replacement of dirty cook stoves with cleaner alternatives, such as solar cookers or newer models that burn fuel more completely, would improve indoor air quality, which is a major health concern in both urban and rural areas of the developing world.

Reducing BC emissions[5] represents a win-win scenario: it would have an immediate cooling effect on the Earth’s climate, potentially delaying temperature increases in the short run and helping reduce the risk of irreversible tipping points in the climate system, and it would reduce air pollution, resulting in fewer premature deaths and fewer missed work and school days.

References:

1. Ramanathan, V. and G. Carmichael. 2008. Nature Geoscience, 1:221-227.

2. BC is a carbonaceous aerosol. An aerosol is a suspension of fine solid particles or liquid droplets within a gas. Examples include smoke, air pollution, smog, oceanic haze, and tear gas. Carbonaceous refers to a substance rich in carbon.

3. The Arctic warmed by 1.48 ± 0.28 °C during 1976–2007; BC is estimated to have caused 0.5–1.4 °C of that change (Shindell, D. et. al. 2009. Nature Geoscience, 2:294-300).

4. Soot from biomass burning generally tends to have a cooling effect on the climate.

5. The American Clean Energy and Security Act of 2009 reported out of the U.S. House Energy and Commerce Committee on May 21, 2009, has a significant section on BC emissions, directing the EPA Administrator to investigate BC sources, impacts, and mitigation technologies.

0
Syndicate content